免费智能真题库 > 历年试卷 > 信息安全工程师 > 2019年上半年 信息安全工程师 下午试卷 案例
  第2题      
  知识点:   密码算法   数字签名   完整性   关键技术   加密   检验   鉴别   信息安全

 
密码学作为信息安全关键技术,在信息安全领域有着广泛的应用。密码学中,根据加密和解密过程所采用密钥的特点可以将密码算法分为两类:对称密码算法和非对称密码算法。此外,密码技术还用于信息鉴别、数据完整性检验数字签名等。
 
问题:2.1   信息安全的基本目标包括真实性、保密性、完整性、不可否认性、可控性、可用性、可审查性等。密码学的三大安全目标C.I.A分别表示什么?
 
问题:2.2   仿射密码是一种典型的对称密码算法。仿射密码体制的定义如下:
令明文和密文空间M=C=Z26,密钥空间K={(k1,k2)∈Z26×Z26:gcd(k1,26)=1}。
对任意的密钥key=(k1,k2)∈K,x∈M,y∈C,定义加密和解密的过程如下:
加密:ekey(x)=(k1x+k2)mod26
解密:dkey(y)=k1-1(y-k2)mod26
其中k1-1表示k1在Z26中的乘法逆元,即k1-1乘以k1对26取模等于1,gcd(k1,26)=1表示k1与26互素。
设已知仿射密码的密钥Key= (11,3),英文字符和整数之间的对应关系如表2.1。则:

(1) 整数11在Z26中的乘法逆元是多少?
(2) 假设明文消息为“SEC”,相应的密文消息是什么?
 
问题:2.3   根据表2.1的对应关系,仿射密码中,如果已知明文“E”对应密交“C",明文“T”对应密文“F”,则相应的key=(k1,k2)等于多少?
 
 
 

   知识点讲解    
   · 密码算法    · 数字签名    · 完整性    · 关键技术    · 加密    · 检验    · 鉴别    · 信息安全
 
       密码算法
        VPN的核心技术是密码算法,VPN利用密码算法,对需要传递的信息进行加密变换,从而确保网络上未授权的用户无法读取该信息。目前,除了国外的DES、AES、IDE、RSA等密码算法外,国产商用密码算法SM1、SM4分组密码算法、SM3杂凑算法等也都可应用到VPN。
 
       数字签名
        数字签名(Digital Signature)是指签名者使用私钥对待签名数据的杂凑值做密码运算得到的结果。该结果只能用签名者的公钥进行验证,用于确认待签名数据的完整性、签名者身份的真实性和签名行为的抗抵赖性。数字签名的目的是通过网络信息安全技术手段实现传统的纸面签字或者盖章的功能,以确认交易当事人的真实身份,保证交易的安全性、真实性和不可抵赖性。数字签名具有与手写签名一样的特点,是可信的、不可伪造的、不可重用的、不可抵赖的以及不可修改的。数字签名至少应满足以下三个条件:
        (1)非否认。签名者事后不能否认自己的签名。
        (2)真实性。接收者能验证签名,而任何其他人都不能伪造签名。
        (3)可鉴别性。当双方关于签名的真伪发生争执时,第三方能解决双方之间发生的争执。
        一个数字签名方案一般由签名算法和验证算法组成。签名算法密钥是秘密的,只有签名的人掌握;而验证算法则是公开的,以便他人验证。典型的数字签名方案有RSA签名体制、Rabin签名体制、ElGamal签名体制和DSS(Data Signature Standard)标准。签名与加密很相似,一般是签名者利用秘密密钥(私钥)对需签名的数据进行加密,验证方利用签名者的公开密钥(公钥)对签名数据做解密运算。签名与加密的不同之处在于,加密的目的是保护信息不被非授权用户访问,而签名是使消息接收者确信信息的发送者是谁,信息是否被他人篡改。
        下面我们给出数字签名工作的基本流程,假设Alice需要签名发送一份电子合同文件给Bob。Alice的签名步骤如下:
        第一步,Alice使用Hash函数将电子合同文件生成一个消息摘要;
        第二步,Alice使用自己的私钥,把消息摘要加密处理,形成一个数字签名;
        第三步,Alice把电子合同文件和数字签名一同发送给Bob。Alice的签名过程如下图所示。
        
        数字签名过程示意图
        Bob收到Alice发送的电子合同文件及数字签名后,为确信电子合同文件是Alice所认可的,验证步骤如下:
        第一步,Bob使用与Alice相同的Hash算法,计算所收到的电子合同文件的消息摘要;
        第二步,Bob使用Alice的公钥,解密来自Alice的加密消息摘要,恢复Alice原来的消息摘要;
        第三步,Bob比较自己产生的消息摘要和恢复出来的消息摘要之间的异同。若两个消息摘要相同,则表明电子合同文件来自Alice。如果两个消息摘要的比较结果不一致,则表明电子合同文件已被篡改。
        Bob验证数字签名的过程如下图所示。
        
        验证数字签名过程示意图
 
       完整性
        完整性(Integrity)是指网络信息或系统未经授权不能进行更改的特性。例如,电子邮件在存储或传输过程中保持不被删除、修改、伪造、插入等。完整性也被称为网络信息系统CIA三性之一,其中I代表Integrity。完整性对于金融信息系统、工业控制系统非常重要,可谓“失之毫厘,差之千里”。
 
       关键技术
        一个完整的嵌入式DBMS由若干子系统组成,包括主DBMS、同步服务器、嵌入式DBMS、连接网络等几个子系统,如下图所示。
        
        嵌入式数据库系统组成
        (1)嵌入式DBMS。嵌入式DBMS是一个功能独立的单用户DBMS。它可以独立于同步服务器和主DBMS运行,对嵌入式系统中的数据进行管理,也可以通过同步服务器连接到主服务器上,对主数据库中的数据进行操作,还可以通过多种方式进行数据同步。
        (2)同步服务器。同步服务器是嵌入式数据库和主数据库之间的连接枢纽,保证嵌入式数据库和主数据库中数据的一致性。
        (3)数据服务器。数据服务器的主数据库及DBMS可以采用Oracle或Sybase等大型通用数据库系统。
        (4)连接网络。主数据库服务器和同步服务器之间一般通过高带宽、低延迟的固定网络进行连接。移动设备和同步服务器之间的连接根据设备具体情况可以是无线局域网、红外连接、通用串行线或公众网等。
               移动DBMS的关键技术
               嵌入式移动数据库在实际应用中必须解决好数据的一致性(复制性)、高效的事务处理和数据的安全性等问题。
               (1)数据的一致性。嵌入式移动数据库的一个显著特点是,移动数据终端之间以及与同步服务器之间的连接是一种弱连接,即低带宽、长延迟、不稳定和经常性断接。为了支持用户在弱环境下对数据库的操作,现在普遍采用乐观复制方法,允许用户对本地缓存上的数据副本进行操作。待网络重新连接后再与数据库服务器或其他移动数据终端交换数据修改信息,并通过冲突检测和协调来恢复数据的一致性。
               (2)高效的事务处理。移动事务处理要解决在移动环境中频繁的、可预见的断接情况下的事务处理。为了保证活动事务的顺利完成,必须设计和实现新的事务管理策略和算法。
               (3)数据的安全性。许多应用领域的嵌入式设备是系统中数据管理或处理的关键设备,因此嵌入式设备上的DBS对存取权限的控制较严格。同时,许多嵌入式设备具有较高的移动性、便携性和非固定的工作环境,也带来潜在的不安全因素。同时某些数据的个人隐私性又很高,因此在防止碰撞、磁场干扰、遗失、盗窃等方面对个人数据的安全性需要提供充分的保证。
               移动DBMS的特性
               移动DBMS的计算环境是传统分布式DBMS的扩展,它可以看做客户端与固定服务器结点动态连接的分布式系统。因此移动计算环境中的DBMS是一种动态分布式DBMS。由于嵌入式移动DBMS在移动计算的环境下应用在EOS之上,所以它有自己的特点和功能需求:
               (1)微核结构。考虑到嵌入式设备的资源有限,嵌入式移动DBMS应采用微型化技术实现,在满足应用的前提下紧缩其系统结构以满足嵌入式应用的需求。
               (2)对标准SQL的支持。嵌入式移动DBMS应能提供了对标准SQL的支持。支持SQL92标准的子集,支持数据查询(连接查询、子查询、排序、分组等)、插入、更新、删除多种标准的SQL语句,充分满足嵌入式应用开发的需求。
               (3)事务管理功能。嵌入式移动DBMS应具有事务处理功能,自动维护事务的完整性、原子性等特性;支持实体完整性和引用完整性。
               (4)完善的数据同步机制。数据同步是嵌入式数据库最重要的特点。通过数据复制,可以将嵌入式数据库或主数据库的变化情况应用到对方,保证数据的一致性。
               (5)支持多种连接协议。嵌入式移动DBMS应支持多种通信连接协议。可以通过串行通信、TCP/IP、红外传输、蓝牙等多种连接方式来实现与嵌入式设备和数据库服务器的连接。
               (6)完备的嵌入式数据库的管理功能。嵌入式移动DBMS应具有自动恢复功能,基本无须人工干预进行嵌入式数据库管理,并能够提供数据的备份和恢复,保证用户数据的安全可靠。
               (7)支持多种EOS。嵌入式移动DBMS应能支持Windows CE、Palm等多种目前流行的EOS,这样才能使嵌入式移动DBMS不受移动终端的限制。
               另外,一种理想的状态是用户只用一台移动终端(如手机)就能对与它相关的所有移动数据库进行数据操作和管理。这就要求前端系统具有通用性,而且要求移动数据库的接口有统一、规范的标准。前端管理系统在进行数据处理时自动生成统一的事务处理命令,提交当前所连接的数据服务器执行。这样就有效地增强了嵌入式移动DBMS的通用性,扩大了嵌入式移动数据库的应用前景。
               在嵌入式移动DBMS中还需要考虑诸多传统计算环境下不需要考虑的问题,例如,对断接操作的支持、对跨区长事务的支持、对位置相关查询的支持、对查询优化的特殊考虑,以及对提高有限资源的利用率和对系统效率的考虑等。为了有效地解决这些问题,诸如复制与缓存技术、移动事务处理、数据广播技术、移动查询处理与查询优化、位置相关的数据处理及查询技术、移动信息发布技术、移动Agent等技术仍在不断地发展和完善,会进一步促进嵌入式移动DBMS的发展。
 
       加密
               保密与加密
               保密就是保证敏感信息不被非授权的人知道。加密是指通过将信息进行编码而使得侵入者不能够阅读或理解的方法,目的是保护数据和信息。解密是将加密的过程反过来,即将编码信息转化为原来的形式。古时候的人就已经发明了密码技术,而现今的密码技术已经从外交和军事领域走向了公开,并结合了数学、计算机科学、电子与通信等诸多学科而成为了一门交叉学科。现今的密码技术不仅具有保证信息机密性的信息加密功能,而且还具有数字签名、身份验证、秘密分存、系统安全等功能,来鉴别信息的来源以防止信息被篡改、伪造和假冒,保证信息的完整性和确定性。
               加密与解密机制
               加密的基本过程包括对原来的可读信息(称为明文或平文)进行翻译,译成的代码称为密码或密文,加密算法中使用的参数称为加密密钥。密文经解密算法作用后形成明文,解密算法也有一个密钥,这两个密钥可以相同也可以不相同。信息编码的和解码方法可以很简单也可以很复杂,需要一些加密算法和解密算法来完成。
               从破译者的角度来看,密码分析所面对的问题有三种主要的变型:①“只有密文”问题(仅有密文而无明文);②“已知明文”问题(已有了一批相匹配的明文与密文);③“选择明文”(能够加密自己所选的明文)。如果密码系统仅能经得起第一种类型的攻击,那么它还不能算是真正的安全,因为破译者完全可能从统计学的角度与一般的通信规律中猜测出一部分的明文,而得到一些相匹配的明文与密文,进而全部解密。因此,真正安全的密码机制应使破译者即使拥有了一些匹配的明文与密文也无法破译其他的密文。
               如果加密算法是可能公开的,那么真正的秘密就在于密钥了,密钥长度越长,密钥空间就越大,破译密钥所花的时间就越长,破译的可能性就越小。所以应该采用尽量长的密钥,并对密钥进行保密和实施密钥管理。
               国家明确规定严格禁止直接使用国外的密码算法和安全产品,原因主要有两点:①国外禁止出口密码算法和产品,目前所出口的密码算法都有破译手段,②国外的算法和产品中可能存在“后门”,要防止其在关键时刻危害我国安全。
               密码算法
               密码技术用来进行鉴别和保密,选择一个强壮的加密算法是至关重要的。密码算法一般分为传统密码算法(又称为对称密码算法)和公开密钥密码算法(又称为非对称密码算法)两类,对称密钥密码技术要求加密解密双方拥有相同的密钥。而非对称密钥密码技术是加密解密双方拥有不相同的密钥。
               对称密钥密码体制从加密模式上可分为序列密码和分组密码两大类(这两种体制之间还有许多中间类型)。
               序列密码是军事和外交场合中主要使用的一种密码技术。其主要原理是:通过有限状态机产生性能优良的伪随机序列,使用该序列将信息流逐比特加密从而得到密文序列。可以看出,序列密码算法的安全强度由它产生的伪随机序列的好坏而决定。分组密码的工作方式是将明文分成固定长度的组(如64比特一组),对每一组明文用同一个密钥和同一种算法来加密,输出的密文也是固定长度的。在序列密码体制中,密文不仅与最初给定的密码算法和密钥有关,同时也是被处理的数据段在明文中所处的位置的函数;而在分组密码体制中,经过加密所得到的密文仅与给定的密码算法和密钥有关,而与被处理的明数据段在整个明文中所处的位置无关。
               不同于传统的对称密钥密码体制,非对称密码算法要求密钥成对出现,一个为加密密钥(可以公开),另一个为解密密钥(用户要保护好),并且不可能从其中一个推导出另一个。公共密钥与专用密钥是有紧密关系的,用公共密钥加密的信息只能用专用密钥解密,反之亦然。另外,公钥加密也用来对专用密钥进行加密。
               公钥算法不需要联机密钥服务器,只在通信双方之间传送专用密钥,而用专用密钥来对实际传输的数据加密解密。密钥分配协议简单,所以极大简化了密钥管理,但公共密钥方案较保密密钥方案处理速度慢,因此,通常把公共密钥与专用密钥技术结合起来实现最佳性能。
               密钥及密钥管理
               密钥是密码算法中的可变参数。有时候密码算法是公开的,而密钥是保密的,而密码分析者通常通过获得密钥来破译密码体制。也就是说,密码体制的安全性建立在对密钥的依赖上。所以,保守密钥秘密是非常重要的。
               密钥管理一般包括以下8个内容。
               (1)产生密钥:密钥由随机数生成器产生,并且应该有专门的密钥管理部门或授权人员负责密钥的产生和检验。
               (2)分发密钥:密钥的分发可以采取人工、自动或者人工与自动相结合的方式。加密设备应当使用经过认证的密钥分发技术。
               (3)输入和输出密钥:密钥的输入和输出应当经由合法的密钥管理设备进行。人工分发的密钥可以用明文形式输入和输出,并将密钥分段处理;电子形式分发的密钥应以加密的形式输入和输出。输入密钥时不应显示明文密钥。
               (4)更换密钥:密钥的更换可以由人工或自动方式按照密钥输入和密钥输出的要求来实现。
               (5)存储密钥:密钥在加密设备内采用明文形式存储,但是不能被任何外部设备访问。
               (6)保存和备份密钥:密钥应当尽量分段保存,可以分成两部分并且保存在不同的地方,例如一部分存储在保密设备中,另一部分存储在IC卡上。密钥的备份也应当注意安全并且要加密保存。
               (7)密钥的寿命:密钥不可以无限期使用,密钥使用得越久风险也就越大。密钥应当定期更换。
               (8)销毁密钥:加密设备应能对设备内的所有明文密钥和其他没受到保护的重要保护参数清零。
 
       检验
        检验(检查)包括测量、检查和测试等活动,目的是确定项目成果是否与要求相一致。检验可以在任何管理层次中开展,例如,一个单项活动的结果和整个项目的最后成果都可以检验。检验有各种名称,如复查、产品复查、审查及评审等。
        检查表(核对表)是常用的检验技术,检查表通常是由详细的条目组成的,用于检查和核对一系列必须采取的步骤是否已经实施的结构化工具,其具体内容因应用的不同而不同。检查表是一种有条理的工具,可简单可烦琐,语言表达形式可以是命令式,也可以是询问式。
        例如,下表是一个确认测试工具属性的检查表例子。
        
        一个确认测试工具属性的检查表例子
 
       鉴别
        鉴别机制是以交换信息的方式确认实体真实身份的一种安全机制。身份可被鉴别的实体称为主体,主体具有一个或多个与之对应的辨别标识符。可被鉴别的主体有:人类用户;进程;实开放系统;OSI层实体;组织机构。鉴别的基本目的是防止其他实体占用和独立操作被鉴别实体的身份,这类危害被称为“冒充”。
        识别将可辨别标识符与某一主体联系起来,与其他主体区别。有时候,一个主体可以拥有并使用一个或多个辨别标识符。在给定的安全域内可辨别标识符要能够将一个主体与域中的其他主体区分开来。在不同的安全域中发生鉴别时,可以将辨别标识符与安全域标识符连接使用,以区别不同安全域中使用同一可辨别标识符的实体。
        鉴别提供了实体声称其身份的保证,只有在主体和验证者的关系背景下,鉴别才是有意义的。有两种重要的关系背景:①主体由申请者来代表,申请者和验证者之间存在着特定通信关系(实体鉴别);②主体为验证者提供数据项来源。其中,申请者用于描述一类实体,这类实体本身就是用于鉴别的主体或者代表用于鉴别的主体。验证者用于描述一类实体,这类实体本身就是要求被鉴别的实体或者代表要求被鉴别的实体。鉴别信息是指申请者要求鉴别至鉴别过程结束所生成、使用和交换的信息。
        鉴别的方法主要有如下5种。
        (1)用拥有的(如IC卡)进行鉴别。
        (2)用所知道的(如密码)进行鉴别。
        (3)用不可改变的特性(如生物学测定的标识特征)进行鉴别。
        (4)相信可靠的第三方建立的鉴别(递推)。
        (5)环境(如主机地址)。
        鉴别分为单向鉴别和双向鉴别。在单项鉴别中,一个实体充当申请者,另一个实体充当验证者;在双向鉴别中,每个实体同时充当申请者和鉴别者,并且两个方向上可以使用相同或者不同的鉴别机制。
        用户在被允许得到访问控制信息之前必须被鉴别,从而允许其在访问控制策略下访问资源,即鉴别服务可以将鉴别结果传送给访问控制服务。
 
       信息安全
        信息安全的5个基本要素为机密性、完整性、可用性、可控性和可审查性。
        (1)机密性。确保信息不暴露给未受权的实体或进程。
        (2)完整性。只有得到允许的人才能修改数据,并能够判别出数据是否已被篡改。
        (3)可用性。得到授权的实体在需要时可访问数据。
        (4)可控性。可以控制授权范围内的信息流向及行为方式。
        (5)可审查性。对出现的安全问题提供调查的依据和手段。
        随着信息交换的激增,安全威胁所造成的危害越来越受到重视,因此对信息保密的需求也从军事、政治和外交等领域迅速扩展到民用和商用领域。所谓安全威胁,是指某个人、物、事件对某一资源的机密性、完整性、可用性或合法性所造成的危害。某种攻击就是威胁的具体实现。安全威胁分为两类:故意(如黑客渗透)和偶然(如信息发往错误的地址)。
        典型的安全威胁举例如下表所示。
        
        典型的安全威胁
   题号导航      2019年上半年 信息安全工程师 下午试卷 案例   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
 
第2题    在手机中做本题