免费智能真题库 > 历年试卷 > 软件设计师 > 2011年上半年 软件设计师 上午试卷 综合知识
  第43题      
  知识点:   设计模式   开发过程   面向对象软件开发   设计模式
  关键词:   面向对象   软件开发过程   设计模式   对象   开发   开发过程   软件开发        章/节:   面向对象基础知识       

 
在面向对象软件开发过程中,采用设计模式(43),
 
 
  A.  以复用成功的设计
 
  B.  以保证程序的运行速度达到最优值
 
  C.  以减少设计过程创建的类的个数
 
  D.  允许在非面向对象程序设计语言中使用面向对象的概念
 
 
 

 
  第46题    2020年下半年  
   41%
某快餐厅主要制作并出售儿童套餐,一般包括主餐(各类比萨)、饮料和玩具,其餐品种类可能不同,但制作过程相同。前台服务员(Waite..
  第47题    2016年下半年  
   25%
(46)模式将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示。以下(47)情况适合选用该模式。
①..
  第46题    2019年上半年  
   34%
以下设计模式中,(44)模式使多个对象都有机会处理请求,将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理为..
   知识点讲解    
   · 设计模式    · 开发过程    · 面向对象软件开发    · 设计模式
 
       设计模式
               设计模式的要素
               设计模式一般有以下4个要素。
               (1)模式名称(Pattern Name)。一个助记名,它用一两个词来描述模式的问题、解决方案和效果。命名一个新的模式增加了设计词汇。设计模式允许在较高的抽象层次上进行设计。基于一个模式词汇表,就可以讨论模式并在编写文档时使用它们。模式名可以帮助人们思考,便于人们与其他人交流设计思想及设计结果。
               (2)问题(Problem)。描述了应该在何时使用模式。它解释了设计问题和问题存在的前因后果,可能描述了特定的设计问题,如怎样用对象表示算法等;也可能描述了导致不灵活设计的类或对象结构。
               (3)解决方案(Solution)。描述了设计的组成成分、它们之间的相互关系及各自的职责和协作方式。因为模式就像一个模板,可应用于多种不同场合,所以解决方案并不描述一个特定而具体的设计或实现,而是提供设计问题的抽象描述和怎样用一个具有一般意义的元素组合(类或对象组合)来解决这个问题。
               (4)效果(Consequences)。描述了模式应用的效果及使用模式应权衡的问题。尽管描述设计决策时并不总提到模式效果,但它们对于评价设计选择和理解使用模式的代价及好处具有重要意义。
               创建型设计模式
               创建型模式抽象了实例化过程。它们可以帮助一个系统独立于如何创建、组合和表示它的那些对象。一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象。
               创建型模式中有两个不断出现的主旋律:第一,它们都将关于该系统使用哪些具体的类的信息封装起来;第二,它们隐藏了这些类的实例是如何被创建和放在一起的。整个系统关于这些对象所知道的是由抽象类所定义的接口。因此,创建型模式在什么地方被创建、谁创建它、它是怎样被创建的以及何时创建这些方面给予了很大的灵活性。它们允许用结构和功能差别很大的"产品"对象配置一个系统。配置可以是静态的(即在编译时指定),也可以是动态的(在运行时)。
               结构性设计模式
               结构性模式涉及如何组合类和对象以获得更大的结构。结构性模式采用继承机制来组合接口或实现。结构性对象模式不是对接口和实现进行组合,而是描述了如何对一些对象进行组合,从而实现新功能的一些方法。
               Composite模式是结构性对象模式的一个实例。它描述了如何构造一个类层次式结构,这一结构由两种类型的对象所对应的类构成。
               Flyweight模式为共享对象定义了一个结构。至少有两个原因要求对象共享,即效率和一致性。Flyweight模式的对象共享机制主要强调对象的空间效率。使用很多对象的应用必须考虑每一个对象的开销。
               Facade模式描述了如何用单个对象表示整个子系统。模式中的Facade用来表示一组对象,Facade的职责是将消息转发给它所表示的对象。
               Bridge模式将对象的抽象和其实现分离,从而可以独立地改变它们。
               Decorator模式描述了如何动态地为对象添加职责。这一模式采用递归方式组合对象,允许添加任意多的对象职责。
               行为设计模式
               行为模式涉及算法和对象间职责的分配。行为模式不仅描述对象或类的模式,还描述它们之间的通信模式。这些模式刻画了在运行时难以跟踪的复杂控制流。它们将你的注意力从控制流转移到对象间的联系方式上来。
               行为类模式使用继承机制在类间分派行为,主要有TemplateMethod和Interpreter两种模式。
               行为对象模式使用对象复合而不是继承。一些行为对象模式描述了一组对等的对象怎样相互协作以完成其中任一个对象都无法单独完成的任务。
               Observer模式定义并保持对象间的依赖关系。典型的Observer的例子就是Smalltalk中的模型/视图/控制器,其中一旦模型的状态发生变化,模型的所有视图都会得到通知。
               其他的行为对象模式常将行为封装在一个对象中,并将请求指派给它。
 
       开发过程
        嵌入式系统软件的开发过程可以分为项目计划、可行性分析、需求分析、概要设计、详细设计、程序建立、下载、调试、固化、测试及运行等几个阶段。
        项目计划、可行性分析、需求分析、概要设计及详细设计等几个阶段,与通用软件的开发过程基本一致,都可按照软件工程方法进行,如采用原型化方法、结构化方法等。
        :由于嵌入式软件的运行和开发环境不同,开发工作是交叉进行的,所以每一步都要考虑到这一点。
        程序建立阶段的工作是根据详细设计阶段产生的文档进行的,主要是源代码编写、编译链接等子过程,这些工作都在宿主机上进行,不需要用到目标机。产生应用程序的可执行文件后,就要用到交叉开发环境进行调试,根据实际情况可以选用3.6.3节中提到的调试方法或其有效组合来进行。由于嵌入式系统对安全性和可靠性的要求比通用计算机系统要高,所以,在对嵌入式系统进行白盒测试时,要求有更高的代码覆盖率。
        最后,要将经调试后正确无误的可执行程序固化到目标机上。根据嵌入式系统硬件配置的不同,可以固化在EPROM(Erasable Programmable ROM,可擦除可编程ROM)和Flash等存储器中,也可固化在DOC(DiskOnChip)等电子盘中,通常还要借助一些专用编程器进行。
 
       面向对象软件开发
        面向对象的方法从问题模型开始,然后进行识别对象、不断细化的过程。它从本质上就是迭代和渐增的。开发过程是一次次的迭代反复过程,随着迭代的进行,系统功能不断完善。典型的面向对象开发方法有RUP(Rational Unified Process)和XP(eXtreme Programming),两者各有侧重,适用于不同的场景。
        1.RUP
        RUP是Rational公司开发和维护的过程产品。RUP以适合于大范围项目和机构的方式捕捉了许多现代软件开发过程的最佳实践。RUP的三个关键特征为迭代(Iterative)、以架构为中心(Architecture-Centric)和用例驱动(Use-Case Driven)。
        RUP的6个基本最佳实践如下:
        .迭代式开发。RUP支持专注于处理生命周期中每个阶段中最高风险的迭代开发方法,极大地减少了项目的风险性。
        .需求管理。RUP描述了如何提取、组织和文档化需要的功能和限制。
        .使用基于构件的体系结构。RUP提供了使用新的及现有构件定义体系结构的系统化方法。
        .可视化软件建模。RUP开发过程显示了对软件如何可视化建模,捕获体系结构及构件的构架和行为。
        .验证软件质量。RUP帮助计划、设计、实现、执行和评估软件质量,并且不是事后型的。
        .控制软件变更。RUP开发过程描述了如何控制、跟踪和监控修改以确保成功的迭代开发。
        RUP的二维开发模型
        RUP可以用二维坐标来描述。横轴表示时间组织,是过程展开的生命周期特征,体现开发过程的动态结构,用来描述它的术语主要包括周期(Cycle)、阶段(Phase)、迭代(Iteration)和里程碑(Milestone);纵轴按内容组织为自然的逻辑活动,体现开发过程的静态结构,用来描述它的术语主要包括活动(Activity)、产物(Artifact)、工作者(Worker)和工作流(Workflow),如下图所示。
        RUP开发过程的各个阶段和里程碑
        RUP中的软件生命周期在时间上被分解为4个顺序的阶段,分别是初始阶段(Inception)、细化阶段(Elaboration)、构造阶段(Construction)和交付阶段(Transition)。每个阶段结束于一个主要的里程碑(Major Milestones);每个阶段本质上是两个里程碑之间的时间跨度。在每个阶段的结尾执行一次评估以确定这个阶段的目标是否已经满足。
        
        RUP的二维开发模型
        (1)初始阶段。
        初始阶段有时也称为先启阶段,该阶段的主要目标是为系统建立商业模型并确定项目的边界。任务包括识别和规避项目的主要风险,建立用例模型框架,并制订里程碑日期的阶段计划。
        初始阶段结束时是第一个重要的里程碑:生命周期目标(Lifecycle Objective)里程碑。该里程碑评估项目的基本可行性。
        (2)细化阶段。
        细化阶段的目标是分析问题领域,建立健全的体系结构基础,编制项目计划,淘汰项目中最高风险的元素。为了达到该目标,必须在理解整个系统的基础上,对体系结构做出决策,包括其范围、主要功能和诸如性能等非功能需求。同时为项目建立支持环境,包括创建开发案例,创建模板、准则并准备工具。
        细化阶段结束时是第二个重要的里程碑:生命周期结构(Lifecycle Architecture)里程碑。该里程碑为系统的架构建立了管理基准,并使项目小组能够在构建阶段中进行衡量。
        (3)构造阶段。
        在构造阶段,所有剩余的构件和应用程序功能被开发并集成为产品,所有的功能被详细测试。从某种意义上说,构造阶段是一个制造过程,其重点放在管理资源及控制运作以优化成本、进度和质量。
        构造阶段结束时是第三个重要的里程碑:初始操作(Initial Operational)里程碑。该里程碑确定产品是否已经可以部署到Beta测试环境。
        (4)交付阶段。
        交付阶段的重点是确保软件对最终用户是可用的。交付阶段可以跨越几次迭代,包括为发布做准备的产品测试,基于用户反馈的少量调整。在生命周期的这一点上,用户反馈应主要集中在产品调整、设置、安装和可用性问题上,所有主要的结构问题应该已经在项目生命周期的早期阶段解决了。
        在交付阶段的终点是第四个里程碑:产品发布(Product Release)里程碑。此时,要确定目标是否实现,是否应该开始另一个开发周期。在一些情况下,这个里程碑可能与下一个周期的初始阶段的结束重合。
        RUP的核心工作流
        RUP中有9个核心工作流,分为6个核心过程工作流(Core Process Workflows)和3个核心支持工作流(Core Supporting Workflows)。尽管6个核心过程工作流可能使人想起传统瀑布模型中的几个阶段,但应注意迭代过程中的阶段是完全不同的,这些工作流在整个生命周期中一次又一次被使用。9个核心工作流在项目中轮流被使用,在每一次迭代中以不同的重点和强度重复。
        (1)商业建模(Business Modeling)。
        商业建模工作流描述了如何为新的目标组织开发一个构想,并基于这个构想在商业用例模型和商业对象模型中定义组织的过程,角色和责任。
        (2)需求(Requirements)。
        需求工作流的目标是描述系统应该做什么,并使开发人员和用户就这一描述达成共识。为了达到该目标,要对需要的功能和约束进行提取、组织、文档化,最重要的是理解系统所解决问题的定义和范围。
        (3)分析和设计(Analysis&Design)。
        分析和设计工作流将需求转化成未来系统的设计,为系统开发一个健壮的结构并调整设计使其与实现环境相匹配,优化其性能。分析设计的结果是一个设计模型和一个可选的分析模型。设计模型是源代码的抽象,由设计类和一些描述组成。设计类被组织成具有良好接口的设计包(Package)和设计子系统(Subsystem),而描述则体现了类的对象如何协同工作实现用例的功能。
        (4)实现(Implementation)。
        实现工作流的目的包括以层次化的子系统形式定义代码的组织结构;以组件的形式(源文件、二进制文件、可执行文件)实现类和对象;将开发出的组件作为单元进行测试以及集成由单个开发者(或小组)所产生的结果,使其成为可执行的系统。
        (5)测试(Test)。
        测试工作流要验证对象间的交互作用,验证软件中所有组件的正确集成,检验所有的需求已被正确地实现,识别并确认缺陷在软件部署之前被提出并处理。RUP提出了迭代的方法,意味着在整个项目中进行测试,从而尽可能早地发现缺陷,从根本上降低了修改缺陷的成本。测试类似于三维模型,分别从可靠性、功能性和系统性能来进行。
        (6)部署(Deployment)。
        部署工作流的目的是成功地生成版本并将软件分发给最终用户。部署工作流描述了那些与确保软件产品对最终用户具有可用性相关的活动,包括软件打包、生成软件本身以外的产品、安装软件、为用户提供帮助。在有些情况下,还可能包括计划和进行beta测试版、移植现有的软件和数据以及正式验收。
        (7)配置和变更管理(Configuration&Change Management)。
        配置和变更管理工作流描绘了如何在多个成员组成的项目中控制大量的产物。配置和变更管理工作流提供了准则来管理演化系统中的多个变体,跟踪软件创建过程中的版本。工作流描述了如何管理并行开发、分布式开发、如何自动化创建工程。同时也阐述了对产品修改原因、时间、人员保持审计记录。
        (8)项目管理(Project Management)。
        软件项目管理平衡各种可能产生冲突的目标,管理风险,克服各种约束并成功交付使用户满意的产品。其目标包括为项目的管理提供框架,为计划、人员配备、执行和监控项目提供实用的准则,为管理风险提供框架等。
        (9)环境(Environment)。
        环境工作流的目的是向软件开发组织提供软件开发环境,包括过程和工具。环境工作流集中于配置项目过程中所需要的活动,同样也支持开发项目规范的活动,提供了逐步的指导手册,并介绍了如何在组织中实现过程。
        2.XP
        极限编程(eXtreme Propgramming,XP)由Kent Beck在1996年开创,是一种演进式的原型化方法,以最大化发挥人的能量为核心目标,具有沟通高效、设计简单、反馈迅速等特点,是一种轻量级、敏捷的过程方法。
        XP是一种高度动态的过程,它通过非常短的迭代周期来应对需求的变化。XP一般适用于需求不确定、变化快、项目历时不超过半年、人数不超过10个、在同一地点工作的中小型团队。
        XP的生命周期包括4个基本活动:编码(coding)、测试(testing)、聆听(listening)、设计(designing)。
        XP的4个价值目标:
        .沟通:让开发人员集体负责所有代码并结队工作,鼓励与客户及团队内部保持沟通。
        .简化:鼓励只开发当前的功能,避免过多的文档,专注于最小化解决方案,做好为新特性改变设计,在系统隐喻和代码规范下不断重构的准备。
        .反馈:通过单元测试和功能测试获得快速反馈。
        .勇气:提倡积极面对现实和处理问题的勇气,拥抱变化。
        XP的12个最佳实践:
        .有计划的开发。通过结合使用标有优先级的“故事”卡和技术估算,确定下一版本的功能。
        .小型发布。以小的增量版本经常向客户发布软件。
        .系统隐喻。隐喻是一个高层次的系统构想,需要不断地细化架构来指导全部开发。
        .简单设计。通过保持代码简单从而保证设计简单。不断地在代码中寻找复杂点并且立刻进行移除。
        .测试驱动。“先测试,后编码”。用户编写测试内容以对“故事”进行测试。程序员编写测试内容来发现代码中的任何问题。在编写代码前先编写测试内容。
        .重构。这是一项简化技术,用来移除代码中的重复内容和复杂之处。
        .结对编程。团队中的两个成员使用同一台计算机开发所有的代码。一个人编写代码或者驱动,另一个人同时审查代码的正确性和可理解性。
        .集体代码所有权。任何人都拥有所有的代码。提高代码透明度,增强团队合作精神。
        .持续集成。每天按任务多次创建和集成系统,随着需求变化,进行不断的回归测试。
        .每周40小时工作制。程序员在疲劳时无法保证最高效率。连续两周加班是绝对不允许的,否则会影响工作效率。
        .现场客户。至少有一名真实的客户全天候工作于开发环境中,帮助定义系统、编写测试内容并回答问题。
        .编码规范。程序员采用统一的编码规范。
 
       设计模式
        “每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的解决方案的核心。这样,你就能一次又一次地使用该方案而不必做重复劳动”。设计模式的核心在于提供了相关问题的解决方案。
        设计模式一般有如下4个要素。
        (1)模式名称(pattern name)。模式名称应具有实际的含义,能反映模式的适用性和意图。
        (2)问题(problem)。描述了应该在何时使用模式,解释了设计问题和问题存在的前因后果。可能描述了特定的设计问题,如怎样用对象表示算法等;也可能描述了导致不灵活设计的类或对象结构。有时候,问题部分会包括使用模式必须满足的一系列先决条件。
        (3)解决方案(solution)。描述了设计的组成成分,它们之间的相互关系及各自的职责和协作方式。解决方案并不描述一个特定的具体的设计或实现,而是提供设计问题的抽象描述和怎样用一个具有一般意义的元素组合(类或对象组合)来解决这个问题。
        (4)效果(consequences)。描述了模式应用的效果及使用模式应权衡的问题。因为复用是面向对象设计的要素之一,所以模式效果包括它对系统的灵活性、扩充性或可移植性的影响,显式地列出这些效果对理解和评价这些模式很有帮助。
        设计模式确定了所包含的类和实例,它们的角色、协作方式以及职责分配。每一个设计模式都集中于一个特定的面向对象设计问题或设计要点,描述了什么时候使用它,在另一些设计约束条件下是否还能使用,以及使用的效果和如何取舍。按照设计模式的目的可以分为创建型、结构型和行为型三大类,如下表所示。
        
        设计模式分类
               创建型设计模式
               创建型模式与对象的创建有关,抽象了实例化过程,它们帮助一个系统独立于如何创建、组合和表示它的那些对象。一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象。
               创建型模式包括面向类和面向对象两种。Factory Method(工厂方法)定义一个用于创建对象的接口,让子类决定实例化哪一个类。Abstract Factory(抽象工厂)提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。Builder(生成器)将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。Factory Method使一个类的实例化延迟到其子类。Prototype(原型)用原型实例指定创建对象的种类,并且通过复制这些原型创建新的对象。Singleton(单例)模式保证一个类仅有一个实例,并提供一个访问它的全局访问点。
               下面以抽象工厂模式和单例模式为例进行说明。
                      Abstract Factory(抽象工厂)
                      (1)意图。提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。
                      (2)结构。抽象工厂模式的结构如下图所示。
                      
                      抽象工厂模式结构图
                      其中:
                      .AbstractFactory声明一个创建抽象产品对象的操作接口。
                      .ConcreteFactory实现创建具体产品对象的操作。
                      .AbstractProduct为一类产品对象声明一个接口。
                      .ConcreteProduct定义一个将被相应的具体工厂创建的产品对象,实现AbstractProduct接口。
                      .Client仅使用由AbstractFactory和AbstractProduct类声明的接口。
                      (3)适用性。Abstract Factory模式适用于:
                      .一个系统要独立于它的产品的创建、组合和表示时。
                      .一个系统要由多个产品系列中的一个来配置时。
                      .当要强调一系列相关的产品对象的设计以便进行联合使用时。
                      .当提供一个产品类库,只想显示它们的接口而不是实现时。
                      Singleton(单例)
                      (1)意图。保证一个类仅有一个实例,并提供一个访问它的全局访问点。
                      (2)结构。单例模式的结构如下图所示。
                      
                      单例模式结构图
                      其中:Singleton指定一个Instance操作,允许客户访问它的唯一实例,Instance是一个类操作;可能负责创建它自己的唯一实例。
                      (3)适用性。Singleton模式适用于:
                      .当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时。
                      .当这个唯一实例应该是通过子类化可扩展的,并且客户无须更改代码就能使用一个扩展的实例时。
               结构型设计模式
               结构型模式处理类或对象的组合,涉及如何组合类和对象以获得更大的结构。结构型类模式采用继承机制来组合接口或实现。一个简单的例子是采用多重继承方法将两个以上的类组合成一个类,结果这个类包含了所有父类的性质。这一模式尤其有助于多个独立开发的类库协同工作。其中一个例子是类形式的Adapter(适配器)模式。一般来说,适配器使得一个接口与其他接口兼容,从而给出了多个不同接口的统一抽象。为此,类Adapter对一个adaptee类进行私有继承。这样,适配器就可以用adaptee的接口表示它的接口。对象Adapter依赖于对象组合。
               下面以适配器模式和代理模式为例进行说明。
                      Adapter(适配器)模式
                      (1)意图。将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。
                      
                      类适配器结构图
                      (2)结构。类适配器使用多重继承对一个接口与另一个接口进行匹配,其结构如上图所示。对象适配器依赖于对象组合,其结构如下图所示。
                      
                      对象适配器结构图
                      其中:
                      .Target定义Client使用的与特定领域相关的接口。
                      .Client与符合Target接口的对象协同。
                      .Adaptee定义一个已经存在的接口,这个接口需要适配。
                      .Adapter对Adaptee的接口与Target接口进行适配。
                      (3)适用性。Adapter模式适用于:
                      .想使用一个已经存在的类,而它的接口不符合要求。
                      .想创建一个可以服用的类,该类可以与其他不相关的类或不可预见的类(即那些接口可能不一定兼容的类)协同工作。
                      .(仅适用于对象Adapter)想使用一个已经存在的子类,但是不可能对每一个都进行子类化以匹配它们的接口。对象适配器可以适配它的父类接口。
                      Proxy(代理)模式
                      (1)意图。为其他对象提供一种代理以控制对这个对象的访问。
                      (2)结构。代理模式的结构如下图所示。
                      
                      代理模式结构图
                      其中:
                      .Proxy保存一个引用使得代理可以访问实体;提供一个与Subject的接口相同的接口,使代理可以用来代替实体;控制对实体的存取,并可能负责创建和删除它;其他功能依赖于代理的类型:Remote Proxy负责对请求及其参数进行编码,并向不同地址空间中的实体发送已编码的请求;Virtual Proxy可以缓存实体的附加信息,以便延迟对它的访问;Protection Proxy检查调用者是否具有实现一个请求所必需的访问权限。
                      .Subject定义RealSubject和Proxy的共用接口,这样就在任何使用RealSubject的地方都可以使用Proxy。
                      .RealSubject定义Proxy所代表的实体。
                      (3)适用性。Proxy模式适用于在需要比较通用和复杂的对象指针代替简单的指针的时候,常见情况有:
                      .远程代理(Remote Proxy)为一个对象在不同地址空间提供局部代表。
                      .虚代理(Virtual Proxy)根据需要创建开销很大的对象。
                      .保护代理(Protection Proxy)控制对原始对象的访问,用于对象应该有不同的访问权限的时候。
                      .智能引用(Smart Reference)取代了简单的指针,它在访问对象时执行一些附加操作。典型用途包括:对指向实际对象的引用计数,这样当该对象没有引用时,可以被自动释放;当第一次引用一个持久对象时,将它装入内存;在访问一个实际对象前,检查是否已经锁定了它,以确保其他对象不能改变它。
                      结构型对象模式不是对接口和实现进行组合,而是描述了如何对一些对象进行组合,从而实现新功能的一些方法。因为可以在运行时刻改变对象组合关系,所以对象组合方式具有更大的灵活性,而这种机制用静态类组合是不可能实现的。
                      Composite(组合)模式将对象组合成树型结构以表示“部分—整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。它描述了如何构造一个类层次式结构,这一结构由两种类型的对象所对应的类构成。其中的组合对象使得用户可以组合基元对象以及其他的组合对象,从而形成任意复杂的结构。proxy(代理)模式为其他对象提供一种代理以控制对这个对象的访问,其中,proxy对象作为其他对象的一个方便的替代或占位符。它的使用可以有多种形式,例如可以在局部空间中代表一个远程地址空间中的对象,也可以表示一个要求被加载的较大的对象,还可以用来保护对敏感对象的访问。proxy模式还提供了对对象的一些特有性质的一定程度上的间接访问,从而可以限制、增强或修改这些性质。Flyweight(享元)模式运用共享技术有效地支持大量细粒度的对象,为了共享对象定义了一个结构。至少有两个原因要求对象共享:效率和一致性。Flyweight的对象共享机制主要强调对象的空间效率。使用很多对象的应用必须考虑每一个对象的开销。使用对象共享而不是进行对象复制,可以节省大量的空间资源。但是,仅当这些对象没有定义与上下文相关的状态时,它们才可以被共享。Flyweight的对象没有这样的状态。任何执行任务时需要的其他一些信息仅当需要时才传递过去。由于不存在与上下文相关的状态,因此Flyweight对象可以被自由地共享。
                      Facade(外观)模式为子系统中的一组接口提供一个一致的界面,定义了一个高层接口,这个接口使得这一子系统更加容易使用。该模式描述了如何用单个对象表示整个子系统。模式中的facade用来表示一组对象,facade的职责是将消息转发给它所表示的对象。Bridge(桥接)模式将对象的抽象和其实现分离,从而可以独立地改变它们。
                      Decorator(装饰)模式描述了如何动态地为对象添加一些额外的职责。该模式采用递归方式组合对象,从而允许添加任意多的对象职责。例如,一个包含用户界面组件的Decorator对象可以将边框或阴影这样的装饰添加到该组件中,或者它可以将窗口滚动和缩放这样的功能添加到组件中。可以将一个Decorator对象嵌套在另外一个对象中,就可以很简单地增加两个装饰,添加其他的装饰也是如此。因此,每个Decorator对象必须与其组件的接口兼容并且保证将消息传递给它。Decorator模式在转发一条信息之前或之后都可以完成它的工作(例如绘制组件的边框)。许多结构型模式在某种程度上具有相关性。
               行为型设计模式
               行为模式对类或对象怎样交互和怎样分配职责进行描述,涉及算法和对象间职责的分配。行为模式不仅描述对象或类的模式,还描述它们之间的通信模式。这些模式刻画了在运行时难以跟踪的复杂的控制流。它们将用户的注意力从控制流转移到对象间的联系方式上来。
               行为类模式使用继承机制在类间分派行为。本章包括两个这样的模式,其中Template Method(模板方法)较为简单和常用。Template Method是一个算法的抽象定义,它逐步地定义该算法,每一步调用一个抽象操作或一个原语操作,子类定义抽象操作以具体实现该算法。另一种行为类模式是Interpreter(解释器)模式,它将一个文法表示为一个类层次,并实现一个解释器作为这些类的实例上的一个操作。
               行为对象模式使用对象复合而不是继承。一些行为对象模式描述了一组对等的对象怎样相互协作以完成其中任一个对象都无法单独完成的任务。这里一个重要的问题是对等的对象。
               如何互相了解对方。对等对象可以保持显式的对对方的引用,但那会增加它们的耦合度。在极端情况下,每一个对象都要了解所有其他的对象。Mediator(中介者)模式用一个中介对象来封装一系列的对象交互,在对等对象间引入一个mediator对象以避免这种情况的出现。mediator提供了松耦合所需的间接性。
               Chain of Responsibility(责任链)使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系,将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。Chain of Responsibility模式提供更松的耦合,让用户通过一条候选对象链隐式地向一个对象发送请求。根据运行时刻情况任一候选者都可以响应相应的请求。候选者的数目是任意的,可以在运行时刻决定哪些候选者参与到链中。
               Observer(观察者)模式定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。典型的Observer的例子是Smalltalk中的模型/视图/控制器,其中一旦模型的状态发生变化,模型的所有视图都会得到通知。
               其他的行为对象模式常将行为封装在一个对象中并将请求指派给它。Strategy(策略)模式将算法封装在对象中,这样可以方便地指定和改变一个对象所使用的算法。Command(命令)模式将一个请求封装为一个对象,从而使得可以用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤销的操作。Memento(备忘录)模式在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便在以后可将该对象恢复到原先保存的状态。State(状态)模式封装一个对象的状态,使得对象在其内部状态改变时可改变它的行为,对象看起来似乎修改了它的类。Visitor(访问者)模式表示一个作用于某对象结构中的各元素的操作,使得在不改变各元素的类的前提下定义作用于这些元素的新操作。Visitor模式封装分布于多个类之间的行为。Iterator(迭代器)模式提供一种方法顺序访问一个聚合对象中的各个元素,且不需要暴露该对象的内部表示。Iterator模式抽象了访问和遍历一个集合中的对象的方式。
               下面以中介者模式和观察者模式为例进行说明。
                      Mediator(中介者)
                      (1)意图。用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
                      (2)结构。中介者模式的结构图如下图所示。
                      
                      中介者模式结构图
                      其中:
                      .Mediator(中介者)定义一个接口用于各同事(Colleague)对象通信。
                      .ConcreteMediator(具体中介者)通过协调各同事对象实现协作行为;了解并维护它的各个同事。
                      .Colleague class(同事类)知道它的中介者对象;每一个同事类对象在需要与其他同事通信的时候与它的中介者通信。
                      (3)适用性。Mediator模式适用于:
                      .一组对象以定义良好但是复杂的方式进行通信,产生的相互依赖关系结构混乱且难以理解。
                      .一个对象引用其他很多对象并且直接与这些对象通信,导致难以复用该对象。
                      .想定制一个分布在多个类中的行为,而又不想生成太多的子类。
                      Observer(观察者)
                      (1)意图。定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。
                      (2)结构。观察者模式的结构图如下图所示。
                      
                      观察者模式结构图
                      其中:
                      .Subject(目标)知道它的观察者,可以有任意多个观察者观察同一个目标;提供注册和删除观察者对象的接口。
                      .Observer(观察者)为那些在目标发生改变时需获得通知的对象定义一个更新接口。
                      .ConcreteSubject(具体目标)将有关状态存入各ConcreteObserver对象;当它的状态发生改变时,向它的各个观察者发出通知。
                      .ConcreteObserver(具体观察者)维护一个指向ConcreteSubject对象的引用;存储有关状态,这些状态应与目标的状态保持一致;实现Observer的更新接口,以使自身状态与目标的状态保持一致。
                      (3)适用性。Observer模式适用于:
                      .当一个抽象模型有两个方面,其中一个方面依赖于另一个方面,将这两者封装在独立的对象中以使它们可以各自独立地改变和复用。
                      .当对一个对象的改变需要同时改变其他对象,而不知道具体有多少对象有待改变时。
                      .当一个对象必须通知其他对象,而它又不能假定其他对象是谁,即不希望这些对象是紧耦合的。
   题号导航      2011年上半年 软件设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第43题    在手机中做本题