免费智能真题库 > 历年试卷 > 数据库系统工程师 > 2017年上半年 数据库系统工程师 上午试卷 综合知识
  第62题      
  知识点:   并行数据库系统   存储器   磁盘   数据库   体系结构   主存储器
  关键词:   处理器   磁盘   数据库   主存储器   存储器   数据   主存        章/节:   数据库技术基础       

 
以下是平行数据库的四种体系结构,在( )体系结构中所有处理器共享一个公共的主存储器磁盘
 
 
  A.  共享内存
 
  B.  共享磁盘
 
  C.  无共享
 
  D.  层次
 
 
 

   知识点讲解    
   · 并行数据库系统    · 存储器    · 磁盘    · 数据库    · 体系结构    · 主存储器
 
       并行数据库系统
        并行体系结构的数据库系统是多个物理上连在一起的CPU,而分布式系统是多个地理上分开的CPU。并行体系结构的数据库类型分为共享内存式多处理器和无共享式并行体系结构。
               共享内存式多处理器
               共享内存式多处理器是指一台计算机上同时有多个活动的CPU,它们共享单个内存和一个公共磁盘接口,如下图所示。这种并行体系结构最接近于传统的单CPU处理器结构,其设计的主要挑战是用N个CPU来得到N倍单CPU的性能。但是,因为不同的CPU对公共内存的访问是平等的,这样可能会导致一个CPU被访问的数据被另一个CPU修改,所以必须要有特殊的处理。然而,由于内存访问采用的是一种高速机制,这种机制很难保证进行内存划分时不损失效率,所以这些共享内存访问问题会随着CPU个数的增加而变得难以解决。
               
               共享式多处理器体系结构
               无共享式并行体系结构
               无共享式并行体系结构是指一台计算机上同时有多个活动的CPU,并且它们都有自己的内存和磁盘,如下图所示,图中粗线表示高速网络。在不产生混淆的情况下,也称为并行数据库系统。各个承担数据库服务责任的CPU划分它们自身的数据,通过划分的任务以及通过每秒兆位级的高速网络通信完成事务查询。
               
               无共享式并行体系结构
 
       存储器
               存储器的分类
                      按存储器所处位置分类
                      按存储器所处的位置,可将其分为内存和外存。
                      (1)内存。内存也称为主存,设置在主机内(或主机板上),用来存放机器当前运行所需要的程序和数据,以便向CPU提供信息。相对于外存,其特点是容量小、速度快。
                      (2)外存。外存也称为辅存,如磁盘、磁带和光盘等,用来存放当前不参与运行的大量信息,必要时可把需要的信息调入内存。相对于内存,外存的容量大、速度慢。
                      按存储器的构成材料分类
                      按构成存储器的材料,可将其分为磁存储器、半导体存储器和光存储器。
                      (1)磁存储器。其是用磁性介质做成的,如磁芯、磁泡、磁膜、磁鼓、磁带及磁盘等。
                      (2)半导体存储器。根据所用元件又可分为双极型和MOS型;根据数据是否需要刷新,又可分为静态(Static memory)和动态(Dynamic memory)两类。
                      (3)光存储器。如CD-ROM、DVD-ROM等光盘(Optical Disk)存储器。
                      按存储器的工作方式分类
                      按存储器的工作方式可将其分为读写存储器和只读存储器。
                      (1)读写存储器(Random Access Memory,RAM)。其是既能读取数据也能存入数据的存储器。
                      (2)只读存储器。根据数据的写入方式,这种存储器又可分为ROM、PROM、EPROM和EEPROM等类型。
                      ①固定只读存储器(Read Only Memory,ROM)。这种存储器的内容是在厂家生产时就写好的,其内容只能读出,不能改变。一般用于存放系统程序BIOS以及用于微程序控制。
                      ②可编程的只读存储器(Programmable Read Only Memory,PROM)。其中的内容可以由用户一次性地写入,写入后不能再修改。
                      ③可擦除可编程的只读存储器(Erasable Programmable Read Only Memory,EPROM)。其中的内容既可以读出,也可以由用户写入,写入后还可以修改。改写的方法是写入之前先用紫外线照射15~20分钟以擦去所有信息,然后再用特殊的电子设备写入信息。
                      ④电擦除可编程的只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)。与EPROM相似,EEPROM中的内容既可以读出,也可以进行改写。只不过这种存储器是用电擦除的方法进行数据的改写。
                      ⑤闪速存储器(Flash Memory)。其简称闪存,闪存的特性介于EPROM和EEPROM之间,类似于EEPROM,也可使用电信号进行信息的擦除操作。整块闪存可以在数秒内删除,速度远快于EPROM。
                      按访问方式分类
                      存储器按访问方式可分为按地址访问的存储器和按内容访问的存储器。
                      按寻址方式分类
                      存储器按寻址方式可分为随机存储器、顺序存储器和直接存储器。
                      (1)随机存储器(Random Access Memory,RAM)。这种存储器可对任何存储单元存入或读取数据,访问任何一个存储单元所需的时间是相同的。
                      (2)顺序存储器(Sequentially Addressed Memory,SAM)。访问数据所需要的时间与数据所在的存储位置相关,磁带是典型的顺序存储器。
                      (3)直接存储器(Direct Addressed Memory,DAM)。介于随机存取和顺序存取之间的一种寻址方式。磁盘是一种直接存取存储器,它对磁道的寻址是随机的,而在一个磁道内则是顺序寻址。
               随机访问存储器
               随机访问存储器(RAM)分为静态RAM和动态RAM两类。静态RAM(SRAM)比动态RAM(DRAM)更快,也更贵。SRAM常用来做高速缓存存储器,DRAM用来作为主存及图形系统的帧缓冲存储区。
               (1)SRAM。在SRAM中,将每个位存储在一个双稳态存储器单元中,每个单元是用一个六晶体管电路来实现的。只要供电,SRAM存储单元的内容就保持不变。
               (2)DRAM。在DRAM中,每个位由一个电容和一个晶体管组成,电容量很小(容量越小速度越快)。与SRAM不同,DRAM存储器单元对干扰很敏感,电容的电压被扰乱之后也不能再自行恢复,也有其他原因会导致漏电,因此,必须在电容中的电荷漏掉之前进行补充,以保证信息不会丢失,这称为刷新。DRAM必须周期性地进行刷新操作。
               由于集成度高、价格低,DRAM常用来构成主存储器,主要采用SDRAM(Synchronous Dynamic Random Access Memory),发展出了SDR SDRAM、DDR SDRAM、DDR2 SDRAM、DDR3 SDRAM、DDR4 SDRAM等。
               由DRAM芯片可组成所需容量要求的内存模块。例如,由4个8M×8位的DRAM芯片(DRAM 0、DRAM 1、DRAM 2、DRAM 3)构成8M×32位的内存区域,32位字的4个字节分别由4个DRAM芯片的同一地址单元提供,DRAM 0提供第1字节(最低字节),DRAM 1提供第2字节,DRAM 2提供第3字节,DRAM 3提供第4字节(最高字节),如下图所示。
               
               由4个8M×8位的DRAM芯片组成8M×32位的内存模块
               外存储器
               外存储器用来存放暂时不用的程序和数据,并且以文件的形式存储。CPU不能直接访问外存中的程序和数据,只有将其以文件为单位调入主存后才可访问。外存储器由磁表面存储器(如磁盘、磁带)及光盘存储器构成。下面介绍两种常用的外存储器。
                      磁盘存储器
                      在磁表面存储器中,磁盘的存取速度较快,且具有较大的存储容量,是目前广泛使用的外存储器。磁盘存储器由盘片、驱动器、控制器和接口组成。盘片用来存储信息。驱动器用于驱动磁头沿盘面径向运动以寻找目标磁道位置,同时驱动盘片以额定速率稳定旋转,并且控制数据的写入和读出。控制器接收主机发来的命令,将它转换成磁盘驱动器的控制命令,并实现主机和驱动器之间数据格式的转换及数据传送,以控制驱动器的读/写操作。一个控制器可以控制一台或多台驱动器。接口是主机和磁盘存储器之间的连接逻辑。
                      硬盘是最常见的外存储器。一个硬盘驱动器内可装有多个盘片,组成盘片组,每个盘片都配有一个独立的磁头。所有记录面上相同序号的磁道构成一个圆柱面,其编号与磁道编号相同。文件存储在硬盘上时尽可能放在同一圆柱面上,或者放在相邻柱面上,这样可以缩短寻道时间。
                      为了正确存储信息,将盘片划成许多同心圆,称为磁道,从外到里编号,最外一圈为0道,往内道号依次增加。沿径向的单位距离的磁道数称为道密度,单位为tpi(每英寸磁道数)。将一个磁道沿圆周等分为若干段,每段称为一个扇段或扇区,每个扇区内可存放一个固定长度的数据块,如512B。磁道上单位距离可记录的位数称为位密度,单位为bpi(每英寸位数)。因为每条磁道上的扇区数相同,而每个扇区的大小又一样,所以每条磁道都记录同样多的信息。又因为里圈磁道圆周比外圈磁道的圆周小,所以里圈磁道的位密度要比外圈磁道的位密度高。最内圈的位密度称为最大位密度。
                      硬盘的寻址信息由硬盘驱动号、圆柱面号、磁头号(记录面号)、数据块号(或扇区号)以及交换量组成。
                      磁盘容量有两种指标:一种是非格式化容量,它是指一个磁盘所能存储的总位数;另一种是格式化容量,它是指各扇区中数据区容量总和。计算公式分别如下:
                      非格式化容量=面数×(磁道数/面)×内圆周长×最大位密度
                      格式化容量=面数×(磁道数/面)×(扇区数/道)×(字节数/扇区)
                      按盘片是否固定、磁头是否移动等指标,硬盘可分为移动磁头固定盘片的磁盘存储器、固定磁头的磁盘存储器、移动磁头可换盘片的磁盘存储器和温彻斯特磁盘存储器(简称温盘)。
                      光盘存储器
                      光盘存储器是一种采用聚焦激光束在盘式介质上非接触地记录高密度信息的存储装置。
                      根据性能和用途,光盘存储器可分为只读型光盘(CD-ROM)、只写一次型光盘(WORM)和可擦除型光盘。只读型光盘是由生产厂家预先用激光在盘片上蚀刻不能再改写的各种信息,目前这类光盘使用很普遍。只写一次型光盘是指由用户一次写入、可多次读出但不能擦除的光盘,写入方法是利用聚焦激光束的热能,使光盘表面发生永久性变化而实现的。可擦除型光盘是读写性光盘,它是利用激光照射引起介质的可逆性物理变化来记录信息。
                      光盘存储器由光学、电学和机械部件等组成。其特点是记录密度高;存储容量大;采用非接触式读/写信息(光头距离光盘通常为2mm);信息可长期保存(其寿命达10年以上);采用多通道记录时数据传送率可超过200MB/s;制造成本低;对机械结构的精度要求不高;存取时间较长等。
 
       磁盘
        在磁表面存储器中,磁盘的存取速度最快,且具有较大的存储容量,是目前广泛使用的外存储器。磁盘存储器由盘片、驱动器、控制器和接口组成。盘片的两面用来存储信息。驱动器用于驱动磁头(读/写头)沿盘面作径向运动以寻找目标磁道位置,驱动盘片以额定速率稳定旋转,通常是5400~15000r/min(Revolution Per Minute,RPM),并且控制数据的写入和读出。控制器接收主机发来的命令,将它转换成磁盘驱动器的控制命令,并实现主机和驱动器之间数据格式的转换及数据传送,以控制驱动器的读/写操作。一个控制器可以控制一台或多台驱动器。接口是主机和磁盘存储器之间的连接逻辑。
        磁盘存储器也称为硬盘存储器。硬盘存储器具有存储容量大,使用寿命长,存取速度较快的特点。硬盘存储器的硬件包括硬盘控制器(适配器)、硬盘驱动器以及连接电缆。硬盘控制器(Hard Disk Controller,HDC)对硬盘进行管理,并在主机和硬盘之间传送数据。硬盘控制器以适配卡的形式插在主板上或直接集成在主板上,然后通过电缆与硬盘驱动器相连。硬盘驱动器(Hard Disk Drive,HDD)中有盘片、磁头、主轴电机(盘片旋转驱动机构)、磁头定位机构、读/写电路和控制逻辑等。
        为了提高单台驱动器的存储容量,在硬盘驱动器内使用了多个盘片,它们被叠装在主轴上,构成一个盘组;每个盘片的两面都可用作记录面,所以一个硬盘的存储容量又称为盘组容量。
        硬盘的接口方式可以说是硬盘另一个非常重要的技术指标,这点从SCSI硬盘和IDE硬盘的巨大差价就能体现出来,接口方式直接决定硬盘的性能。现在最常见的接口有IDE(ATA)和SCSI两种,此外还有一些移动硬盘采用了PCMCIA或USB接口。
        .IDE(Integrated Drive Electronics):IDE接口最初由CDC、康柏和西部数据公司联合开发,由美国国家标准协会(ATA)制定标准,所以又称ATA接口。普通用户家里的硬盘几乎全是IDE接口的。IDE接口的硬盘可细分为ATA-1(IDE)、ATA-2(EIDE)、ATA-3(Fast ATA-2)、ATA-4(包括UItraATA、Ultra ATA/33、Ultra ATA/66)与Serial ATA(包括Ultra ATA/100及其他后续的接口类型)。基本IDE接口数据传输率为4.1Mb/s,传输方式有PIO和DMA两种,支持总线为ISA和EISA。后来为提高数据传输率、增加接口上能连接的设备数量、突破528MB限制及连接光驱的需要,又陆续开发了ATA-2、ATAPI和针对PCI总线的FAST-ATA、FAST-ATA2等标准,数据传输率达到了16.67MB/s。
        .小型计算机系统接口(Small Computer System Interface,SCSI):SCSI并不是专为硬盘设计的,实际上它是一种总线型接口。由于独立于系统总线工作,所以它的最大优势在于其系统占用率极低,但由于其昂贵的价格,这种接口的硬盘大多用于服务器等高端应用场合。
 
       数据库
        数据库(DataBase,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。
        系统使用的所有数据存储在一个或几个数据库中。
 
       体系结构
        RPR的体系结构如下图所示。RPR采用了双环结构,由内层的环1和外层的环0组成,每个环都是单方向传送。相邻工作站之间的跨距包含传送方向相反的两条链路。RPR支持多达255个工作站,最大环周长为2000km。
        
        RPR体系结构
 
       主存储器
               主存储器基本组成
               半导体读写存储器简称RWM,习惯上也称为RAM。半导体RAM具有体积小、存取速度快等优点,因而适合作为内存储器使用。按工艺不同可将半导体RAM分为双极型RAM和MOS型RAM两大类,这里以静态MOS存储器芯片为例介绍其组成。
               静态MOS存储器芯片由存储体、读写电路、地址译码和控制电路等部分组成。
               (1)存储体(存储矩阵)。
               存储体是存储单元的集合。在容量较大的存储器中往往把各个字的同一位组织在一个集成片中。
               (2)地址译码器。
               地址译码器把用二进制表示的地址转换为译码输入线上的高电位,以便驱动相应的读写电路。地址译码有两种方式:一种是单译码方式,适用于小容量存储器;另一种是双译码方式,适用于容量较大的存储器。
               (3)驱动器。
               在双译码结构中,一条X方向的选择线要控制在其上的各个存储单元的字选线,所以负载较大,需要在译码器输出后加驱动器。
               (4) I/O控制。
               它处于数据总线和被选用的单元之间,用以控制被选中单元的读出或写入,并具有放大信息的作用。
               (5)片选控制。
               一个存储芯片的容量往往满足不了计算机对存储器容量的要求,所以需将一定数量的芯片按一定方式连接成一个完整的存储器。在访问某个字时,必须“选中”该字所在的芯片,而其他芯片不被“选中”。因而每个芯片上除了地址线和数据线外,还有片选控制信号。在地址选择时,由芯片外的地址译码器的输入信号以及它的一些控制信号,如“访存控制”来产生片选控制信号,选中要访问的存储字所在的芯片。
               (6)读/写控制。
               根据CPU给出的信号是读命令还是写命令,控制被选中存储单元的读写。
               存储器主要技术指标
               (1)存储容量。
               存储容量是指每个存储芯片所能存储的二位制位数。主存储存储器按8位二进制位或其倍数划分存储单元,故存储容量通常以字节(8位)为单位。主存容量大则可以运行比较复杂的程序,并可存入大量信息,可利用更完善的软件支撑环境。所以,计算机处理能力的大小在很大程度上取决于主存容量的大小。
               (2)存取速度。
               存储器的速度可用访问时间、存储周期或频宽来描述。
               访问时间一般用读出时间TA及写入时间Tw来描述。TA是从存储器接到读命令以后至信息被送到数据总线上所需的时间。Tw是将一个字写入存储器所需的时间。
               存取周期是存储器进行一次完整的读写操作所需要的全部时间,也就是存储器进行连续读写操作所允许的最短间隔时间。一般用TM表示,它直接关系到计算机的运算速度。一般有TM>TA,TM>TW,TM的单位常采用微秒或毫微秒。
               存储器的频宽B表示存储器被连续访问时,可以提供的数据传送速率,通常用每秒钟传送信息的位数(或字节数)来衡量。
               (3)可靠性。
               存储器的可靠性用平均故障间隔时间MTBF来描述,它可理解为两次故障之间的平均时间间隔。显然。MTBF越长,表示可靠性越高。
   题号导航      2017年上半年 数据库系统工程师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第62题    在手机中做本题