免费智能真题库 > 历年试卷 > 信息处理技术员 > 2010年下半年 信息处理技术员 上午试卷 综合知识
  第4题      
  知识点:   存储器   存储体系结构   RAM   内存   外存储器
  关键词:   RAM   内存   外存储器   存储器        章/节:   硬件基础知识       

 
与外存储器相比,RAM存储器的特点是(4)。
 
 
  A.  存储的信息永不丢失,但存储容量相对较小
 
  B.  存取信息的速度较快,但存储容量相对较小
 
  C.  关机后存储的信息将完全丢失,但存储信息的速度不如软盘
 
  D.  存储的容量很大,没有任何限制
 
 
 

 
  第20题    2011年下半年  
   53%
使用Cache可以提高计算机的运行速度,这是因为(20)。
  第1题    2010年下半年  
   50%
以下存储介质中数据存储量最大的是(1)。
  第15题    2012年下半年  
   27%
目前流行的台式计算机,其内存容量一般以(15)单位标注。
   知识点讲解    
   · 存储器    · 存储体系结构    · RAM    · 内存    · 外存储器
 
       存储器
        存储器可以分为内(主)存储器和外(辅助)存储器两大类。通常CPU只能直接访问内存中的数据,因此内存的存取速度直接影响计算机的运算速度。目前,大多数内存由半导体器件构成。内存具有容量小、存取速度快、停电后数据丢失的特点。通常外存不和计算机的其他部件直接交换数据,而是成批地与内存交换数据。常见的外存设备有软盘、硬盘、闪盘、光盘和磁带等。外存具有容量大、停电后数据不丢失,但存取速度慢的特点。
 
       存储体系结构
        存储体系结构包括不同层次上的存储器,通过适当的硬件、软件有机地组合在一起形成计算机的存储体系结构。现在大多数人都将高性能计算机的存储体系结构描述成下图所示的4层结构:CPU内部的寄存器→高速缓存(Cache)→主存储器(Main memory,MM)→辅助存储器(外存储器)。在有的资料中,CPU内部的寄存器不看作一个层次,这样存储体系结构为三层:高速缓存→主存储器→辅助存储器。有一些简单的计算机没有高速缓存,那么计算机存储体系结构为两层:主存储器→辅助存储器。
        
        存储器层次结构示意图
        存储器通常用的三个指标:速度、容量和每位价格。通常,位价格越高,速度越快;容量越大,位价格越低,自然速度也就越慢。
        Cache是一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问。当CPU访问内存中的某地址数据时,系统首先检查Cache中是否存有该地址的数据,如果有,则直接将数据返回CPU;如果没有,则进行常规的内存访问。因此,Cache与内存相比,其速度快、容量小,且单位成本高,所以当内存的访问速度低于CPU的速度时,通常使用Cache解决这一问题。Cache分为L1 Cache(一级缓存)和L2 Cache(二级缓存),目前L1 Cache主要是集成在CPU内部,而L2 Cache集成在主板上或者是CPU上。
 
       RAM
        易失性存储设备的代表是随机存取存储器(Random Access Memory,RAM)。在计算机存储体系结构中,RAM是与CPU直接交换数据的内部存储器,也叫主存或内存,其内部结构图如下图2-12所示。
        
        RAM结构图
        RAM电路由地址译码器、存储矩阵和读写控制电路三部分组成,如上图所示。存储矩阵由触发器排列而成,每个触发器能存储一位数据(0/1)。通常将每一组存储单元编为一个地址,存放一个“字”;每个字的位数等于这组单元的数目。存储器的容量以“字数×位数”表示。地址译码器将每个输入的地址代码译成高(或低)电平信号,从存储矩阵中选中一组单元,使之与读写控制电路接通。在读写控制信号的配合下,将数据读出或写入。
        RAM的特点之一就是随机读写,其含义指的是当RAM存储器中的数据被读取或写入时,所需要的时间与这段信息所在位置或所写入位置是无关的。
        RAM的读写速度很快,几乎是所有访问设备中写入和读取速度最快的,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介。
        RAM存储器在断电时将丢失其存储内容,所以称为易失性存储设备,其主要用于存储短时间使用的程序。易失性和RAM的结构有关:随机存取存储器依赖电容器存储数据。电容器充满电后代表1(二进制),未充电的代表0。由于电容器或多或少有漏电的情形,若不作特别处理,数据会渐渐随时间流失。刷新是指定期读取电容器的状态,然后按照原来的状态重新为电容器充电,弥补流失电荷。需要刷新就解释了随机存取存储器的易失性。
        按照RAM存储单元的工作原理,RAM又分为静态随机存储器(Static RAM,SRAM)和动态随机存储器(Dynamic RAM,DRAM)。
               SRAM
               静态存储单元是在静态触发器的基础上附加门控管而构成的。因此,它是靠触发器的自保功能存储数据的。SRAM将每个位存储在一个双稳态存储器单元,每个单元用一个六晶体管电路实现。
               数据一旦写入,其信息就稳定的保存在电路中等待读出。无论读出多少次,只要不断电,此信息会一直保持下去。SRAM初始加电时,其状态是随机的。写入新的状态,原来的旧状态就消失了。新状态会一直维持到写入新的状态为止。
               在电路工作时,即使不进行读写操作,只要保持在加电状态下,电路中就一定有晶体管导通,就一定就有电流流过,带来功率消耗。因此与DRAM相比,SRAM功耗较大,集成度不能做得很高。
               高速缓存Cache一般采用SRAM。高速缓冲存储器是存在于主存与CPU之间的一级存储器,由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多,接近于CPU的速度。
               DRAM
               DRAM将每个位存储为对一个电容的充电,每个单元由一个电容和一个访问晶体管组成。当DRAM存储器单元中的电容非常小,它被干扰之后很难恢复,也有很多原因会造成电容漏电,因此为了避免存储信息的丢失,必须定时地给电容补充电荷。通常把这种操作称为“刷新”或“再生”,因此DRAM内部要有刷新控制电路,其操作也比静态RAM复杂。尽管如此,由于DRAM存储单元的结构非常简单,所用元器件少且功耗低,可以制造得很密集,已成为大容量RAM的主流产品。
               DRAM的存储矩阵由动态MOS存储单元组成。动态MOS存储单元利用MOS管的栅极电容来存储信息,但由于栅极电容的容量很小,而漏电流又不可能绝对等于0,所以电荷保存的时间有限。为了避免存储信息的丢失,必须定时地给电容补充漏掉的电荷。通常把这种操作称为“刷新”或“再生”,因此DRAM内部要有刷新控制电路,其操作也比静态RAM复杂。
               DRAM必须定时不断刷新,以保证所存储的信息不会丢失,这或许是称之为动态的原因。初始加电时,其状态是随机的。写入新的状态,原来的旧状态就消失了。新状态会一直维持到写入新的状态为止。在电路上加上电源不进行读写及刷新操作时,只是保持在加电状态下,电路中没有晶体管导通,也就没有电流流过(会有极其微小的漏电流存在),也就没有功率消耗(或功耗可忽略不计)。因此,DRAM的功耗非常小,其集成度可做的很高,当前的一块DRAM芯片的集成度可达GB级别。
               常说的内存条,就是由DRAM构成。随着时间发展,DRAM经历若干代变更,早期的PM DRAM、EDO DRAM均已淘汰,目前仍在使用的主要是SDRAM和DDR SDRAM。
               DDR SDRAM
               双倍速率同步动态随机存储器(Double Data Rate SDRAM,DDR SDRAM)。通常人们习惯称之为DDR。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系。
               内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的最高工作频率。内存主频是以MHz(兆赫)为单位来计量的。内存主频越高在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存最高能在什么样的频率正常工作。
 
       内存
        除了CPU,内存也是影响系统性能的最常见的瓶颈之一。看系统内存是否够用的一个重要参考就是分页文件的数目,分页文件是硬盘上的真实文件,当操作系统缺少物理内存时,它就会把内存中的数据挪到分页文件中去,如果单位时间内此类文件使用频繁(每秒个数大于5),那就应该考虑增加内存。具体考察内存的性能的参数包括内存利用率、物理内存和虚拟内存的大小。
 
       外存储器
        外存储器用来存放暂时不用的程序和数据,并且以文件的形式存储。CPU不能直接访问外存中的程序和数据,只有将其以文件为单位调入主存才可访问。外存储器主要由磁表面存储器(如磁盘、磁带)、光盘存储器及固态硬盘(采用Flash芯片或DRAM作为存储介质的存储器)构成。
               磁盘存储器
               硬盘是最常见的外存储器。一个硬盘驱动器内可装有多个盘片,组成盘片组,每个盘片都配有一个独立的读/写头。
               为了正确地存储信息,将盘片划成许多同心圆,称为磁道(track)。将一个磁道沿圆周划分为若干段,每段称为一个扇区(sector),每个扇区内可存放一个固定长度的数据块,如512字节。一组盘片的所有记录面上相同序号的磁道构成一个柱面(cylinder)。
               硬盘的寻址信息由硬盘驱动号、柱面号、磁头号(记录面号)、数据块号(或扇区号)以及交换量组成。
               磁盘以扇区大小的块来读写数据。对扇区的访问时间(access time)主要包括以下三个部分:寻道时间(seek time)、旋转时间(rotational latency)和传送时间(transfer time)。
               (1)寻道时间。为了读取某个目标扇区的内容,需要将读/写头移动到包含目标扇区的磁道上,这称为寻道时间Tseek。显然,寻道时间与读/写头的移动速度以及其之前的位置有关。通过数千次对随机扇区的寻道操作求平均值来测得平均寻道时间,一般为3~9ms。
               (2)旋转时间。一旦读/写头定位至期望的磁道,就等待目标扇区旋转到读/写头的下方,该时间依赖于读/写头到达目标扇区前盘面的位置和旋转速度。在最坏情况下,读/写头刚好错过目标扇区,就必须等待磁盘旋转一周。因此,最大旋转延迟时间Tmax rotaion为磁盘旋转速度的倒数,平均旋转时间Tavg rotaion为最大旋转延迟时间的一半。
               (3)传送时间。当目标扇区的第一个位位于读/写头下方时,就可以开始读或写该扇区的内容了。一个扇区数据的传送时间依赖与旋转速度和每磁道的扇区数目,因此可以粗略估算一个扇区的平均传送时间Tavg transfer为磁盘旋转速度的倒数乘以每磁道扇区数的倒数。
               现代磁盘构造复杂,大容量磁盘采用多区记录技术,将柱面的集合分割成不相交的子集,每个子集称为一个记录区。每个记录区包含一组连续的柱面,一个及记录区中每个柱面的每条磁道有相同数量的扇区,扇区数由最靠近盘片中心的磁道所能包含的扇区数决定。
               一个磁盘上可以记录的最大位数称为其最大容量。最大容量由记录密度、磁道密度和面密度决定。
               记录密度是指每英寸磁道的段中可以存储的位数。磁道密度是盘片半径方向上每英寸的磁道数。面密度则是记录密度与磁道密度的乘积。
               磁盘最大容量等于每扇区字节数×每磁道平均扇区数×每盘面磁道数×每盘片记录面数×盘片数。
               磁盘通常以千兆字节(GB)或兆兆字节(TB)为单位来表示磁盘容量,且1GB=109B,1TB=1012B。
               磁盘控制器必须对磁盘进行格式化后才能存储数据。格式化后的容量通常小于最大容量。
               光盘存储器
               根据性能和用途,光盘存储器可分为只读型光盘(CD-ROM)、只写一次型光盘(WORM)和可擦除型光盘。只读型光盘是由生产厂家预先用激光在盘片上蚀刻不能再改写的各种信息,目前这类光盘的使用很普遍。只写一次型光盘是指由用户一次写入、可多次读出但不能擦除的光盘,写入方法是利用聚焦激光束的热能,使光盘表面发生永久性变化而实现的。可擦除型光盘是读/写型光盘,它是利用激光照射引起介质的可逆性物理变化来记录信息。
               光盘存储器由光学、电学和机械部件等组成。其特点是记录密度高、存储容量大、采用非接触式读/写信息(光头距离光盘通常为2mm)、信息可长期保存(其寿命达10年以上)、采用多通道记录时数据传送率可超过200Mb/s、制造成本低、对机械结构的精度要求不高、存取时间较长。
               固态硬盘
               固态硬盘(Solid State Disk,SSD)的存储介质分为两种,一种是采用闪存(FLASH芯片)作为存储介质;另一种是采用DRAM作为存储介质。
               基于闪存的固态硬盘是固态硬盘的主要类别,其主体是一块PCB板,板上最基本的配件就是控制芯片、缓存芯片和用于存储数据的闪存芯片。主控芯片是固态硬盘的大脑,其作用有两个:一是合理调配数据在各个闪存芯片上的负荷;二是承担数据中转的作用,连接闪存芯片和外部SATA或USB接口。不同主控芯片差异很大,在数据处理能力、算法,对闪存芯片的读写控制方面会有非常大的不同,直接会导致固态硬盘产品在性能上差距很大。
               一个闪存由多个块、每块由多页组成,通常页的大小为512B~4KB,块的大小为32~128页。在闪存中,数据是以页为单位读写的。只有在一个页所在的块被整体擦除后,才能写入该页。写一个块重复写入限定次数(例如100000)后,该块就会磨损坏而不能再使用。如果一个固态硬盘的主控芯片中磨损逻辑处理得好,就可以用很多年。
               SSD的读操作比写操作要快,顺序读写操作比随机读写操作要快。进行随机写操作时,要擦除整块,因此需要较长的时间。另外,如果写操作试图修改一个包含其他有用数据的块,则需要将有用数据复制到一个新擦除的块中,然后才能进行写入操作。
               固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘基本相同,外形和尺寸也基本与普通的2.5英寸硬盘一致。
               固态硬盘虽然价格仍较为昂贵,容量较低,但是由于具有传统机械硬盘不具备的快速读写、质量轻、能耗低以及体积小等特点,因此常作为传统机械式硬盘的替代品使用。
   题号导航      2010年下半年 信息处理技术员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第4题    在手机中做本题