免费智能真题库 > 历年试卷 > 系统架构设计师 > 2018年下半年 系统架构设计师 上午试卷 综合知识
第26题      
知识点   开发过程   开发阶段   过程模型
关键词   开发过程模型   软件开发过程   原型   开发   开发过程   软件开发      分类   系统开发基础       

 
软件开发过程模型中,( )主要由原型开发阶段和目标软件开发阶段构成。
 
 
  A.  原型模型
 
  B.  瀑布模型
 
  C.  螺旋模型
 
  D.  基于构件的模型
 
 
 

  相关试题     系统开发基础    更多>  
 
  第24题    2011年下半年  
   48%
 利用需求跟踪能力链(traceabilitylink)可以跟踪一个需求使用的全过程,也就是从初始需求到实现的前后生存期。需求跟踪能力..
  第37题    2018年下半年  
   23%
EJB是企业级Java构件,用于开发和部署多层结构的、分布式的、面向对象的Java应用系统。其中,(36)负责完成服务端与客户端的交互..
  第25题    2010年下半年  
   45%
需求管理是CMM可重复级中的6个关键过程域之一,其主要目标是(25)。
 


   知识点讲解    
   · 开发过程    · 开发阶段    · 过程模型
 
       开发过程
        嵌入式系统软件的开发过程可以分为项目计划、可行性分析、需求分析、概要设计、详细设计、程序建立、下载、调试、固化、测试及运行等几个阶段。
        项目计划、可行性分析、需求分析、概要设计及详细设计等几个阶段,与通用软件的开发过程基本一致,都可按照软件工程方法进行,如采用原型化方法、结构化方法等。
        :由于嵌入式软件的运行和开发环境不同,开发工作是交叉进行的,所以每一步都要考虑到这一点。
        程序建立阶段的工作是根据详细设计阶段产生的文档进行的,主要是源代码编写、编译链接等子过程,这些工作都在宿主机上进行,不需要用到目标机。产生应用程序的可执行文件后,就要用到交叉开发环境进行调试,根据实际情况可以选用3.6.3节中提到的调试方法或其有效组合来进行。由于嵌入式系统对安全性和可靠性的要求比通用计算机系统要高,所以,在对嵌入式系统进行白盒测试时,要求有更高的代码覆盖率。
        最后,要将经调试后正确无误的可执行程序固化到目标机上。根据嵌入式系统硬件配置的不同,可以固化在EPROM(Erasable Programmable ROM,可擦除可编程ROM)和Flash等存储器中,也可固化在DOC(DiskOnChip)等电子盘中,通常还要借助一些专用编程器进行。
 
       开发阶段
               单元测试
               单元测试又称模块测试,是针对软件设计的最小单位——程序模块,进行正确性检验的测试工作。其目的在于发现各模块内部可能存在的各种差错。单元测试需要从程序的内部结构出发设计测试用例。多个模块可以平行地独立进行单元测试。
               . 单元测试的内容。
               在进行单元测试时,测试者需要依据详细设计说明书和源程序清单,了解该模块的I/O条件和模块的逻辑结构,主要采用白盒测试的测试用例,辅之以黑盒测试的测试用例,使之对任何合理的输入和不合理的输入,都能鉴别和响应。这要求对所有的局部的和全局的数据结构、外部接口和程序代码的关键部分,都要进行桌面检查和严格的代码审查。
               在单元测试中进行的测试工作如下图所示,需要在五个方面对所测模块进行检查。
               
               单元测试的工作
               ①模块接口测试。
               在单元测试的开始,应对通过所测模块的数据流进行测试。如果数据不能正确地输入和输出,就谈不上进行其他测试。为此,对模块接口可能需要如下的测试项目:调用所测模块时的输入参数与模块的形式参数在个数、属性、顺序上是否匹配;所测模块调用子模块时,它输入给子模块的参数与子模块中的形式参数在个数、属性、顺序上是否匹配;是否修改了只作输入用的形式参数;输出给标准函数的参数在个数、属性、顺序上是否正确;全局量的定义在各模块中是否一致;限制是否通过形式参数来传送。
               当模块通过外部设备进行输入/输出操作时,必须附加如下的测试项目:文件属性是否正确;OPEN语句与CLOSE语句是否正确;规定的I/O格式说明与I/O语句是否匹配;缓冲区容量与记录长度是否匹配;在进行读写操作之前是否打开了文件;在结束文件处理时是否关闭了文件;正文书写/输入错误,以及I/O错误是否检查并做了处理。
               ②局部数据结构测试。
               模块的局部数据结构是最常见的错误来源,应设计测试用例以检查以下各种错误:不正确或不一致的数据类型说明;使用尚未赋值或尚未初始化的变量;错误的初始值或错误的缺省值;变量名拼写错或书写错;不一致的数据类型。可能的话,除局部数据之外的全局数据对模块的影响也需要查清。
               ③路径测试。
               由于通常不可能做到穷举测试,所以在单元测试期间要选择适当的测试用例,对模块中重要的执行路径进行测试。应当设计测试用例查找由于错误的计算、不正确的比较或不正常的控制流而导致的错误。对基本执行路径和循环进行测试,可以发现大量的路径错误。
               常见的不正确计算有:运算的优先次序不正确或误解了运算的优先次序;运算的方式错,即运算的对象彼此在类型上不相容;算法错;初始化不正确;运算精度不够;表达式的符号表示不正确。
               常见的比较和控制流错误有:不同数据类型的相互比较;不正确的逻辑运算符或优先次序;因浮点数运算精度问题而造成的两值比较不等;关系表达式中不正确的变量和比较符;“差1”错,即不正确地多循环一次或少循环一次;错误的或不可能的循环中止条件;当遇到发散的迭代时不能中止的循环;不适当地修改了循环变量等。
               ④错误处理测试。
               比较完善的模块设计要求能预见出错的条件,并设置适当的出错处理,以便在一旦程序出错时,能对出错程序重做安排,保证其逻辑上的正确性。这种出错处理也应当是模块功能的一部分。若出现下列情况之一,则表明模块的错误处理功能包含有错误或缺陷:出错的描述难以理解;出错的描述不足以对错误定位,不足以确定出错的原因;显示的错误与实际的错误不符;对错误条件的处理不正确;在对错误进行处理之前,错误条件已经引起系统的干预等。
               ⑤边界测试。
               在边界上出现错误是常见的。例如,在一段程序内有一个n次循环,当到达第n次重复时就可能会出错。另外,在取最大值或最小值时也容易出错。因此,要特别注意数据流、控制流中刚好等于、大于或小于确定的比较值时出错的可能性。对这些地方要仔细地选择测试用例,认真加以测试。
               此外,如果对模块运行时间有要求的话,还要专门进行关键路径测试,以确定最坏情况下和平均意义下影响模块运行时间的因素。这类信息对进行性能评价是十分有用的。
               虽然模块测试通常是由编写程序的人自己完成的,但是项目负责人应当关心测试的结果。所有测试用例和测试结果都是模块开发的重要资料,必须妥善保存。
               总之,模块测试针对的程序规模较小,易于查错;发现错误后容易确定错误的位置,易于排错,同时多个模块可以并行测试。做好模块测试可为后续的测试打下良好的基础。
               . 单元测试的步骤。
               通常单元测试是在编码阶段进行的。在源程序代码编制完成,经过评审和验证,确认没有语法错误之后,就开始进行单元测试的测试用例设计。利用设计文档,设计可以验证程序功能、找出程序错误的多个测试用例。对于每一组输入,应有预期的正确结果。
               模块并不是一个独立的程序,在考虑测试模块时,同时要考虑它和外界的联系,用一些辅助模块去模拟与所测模块相联系的其他模块。这些辅助模块分为两种:
               驱动模块(driver)——相当于所测模块的主程序。它接收测试数据,把这些数据传送给所测模块,最后再输出实测结果。
               桩模块(stub)——也叫做存根模块。用以代替所测模块调用的子模块。桩模块可以做少量的数据操作,不需要把子模块所有功能都带进来,但不允许什么事情也不做。
               所测模块、与它相关的驱动模块及桩模块共同构成了一个“测试环境”,如下图所示。驱动模块和桩模块的编写会给测试带来额外的开销。因为它们在软件交付时不作为产品的一部分一同交付,而且它们的编写需要一定的工作量。特别是桩模块,不能只简单地给出“曾经进入”的信息。为了能够正确地测试软件,桩模块可能需要模拟实际子模块的功能,这样,桩模块的建立就不是很轻松了。
               
               单元测试的测试环境
               模块的内聚程度高,可以简化单元测试过程。如果每一个模块只完成一种功能,则需要的测试用例数目将明显减少,模块中的错误也容易被预测和发现。
               当然,如果一个模块要完成多种功能,且以程序包(package)的形式出现的也不少见,这时可以将这个模块看成由几个小程序组成。必须对其中的每个小程序先进行单元测试要做的工作,对关键模块还要做性能测试。对支持某些标准规程的程序,更要着手进行互联测试。有人把这种情况特别称为模块测试,以区别单元测试。
               集成测试
               集成测试也叫做组装测试或联合测试。通常,在单元测试的基础上,需要将所有模块按照概要设计说明书和详细设计说明书的要求进行组装。
               . 组装时需要考虑的问题。
               ①在把各个模块连接起来的时候,穿越模块接口的数据是否会丢失;
               ②一个模块的功能是否会对另一个模块的功能产生不利的影响;
               ③各个子功能组合起来,能否达到预期要求的父功能;
               ④全局数据结构是否有问题;
               ⑤单个模块的误差累积起来,是否会放大,以至达到不能接受的程度。
               因此,在单元测试的同时可进行集成测试,发现并排除在模块连接中可能出现的问题,最终构成要求的软件系统。
               子系统的集成测试称为部件测试,它所做的工作是要找出组装后的子系统与系统需求规格说明之间的不一致。
               选择什么方式把模块组装起来形成一个可运行的系统,直接影响到模块测试用例的形式、所用测试工具的类型、模块编号的次序和测试的次序以及生成测试用例的费用和调试的费用。
               . 模块组装成为系统的方式。
               模块组装成为系统的方式有两种:一次性组装方式和增殖式组装方式。
               ①一次性组装方式(big bang)。
               它是一种非增殖式组装方式,也叫做整体拼装。使用这种方式,首先对每个模块分别进行模块测试,再把所有模块组装在一起进行测试,最终得到要求的软件系统。例如,有一个模块系统结构,如下图(a)所示。其单元测试和组装顺序如下图(b)所示。
               
               一次性组装方式
               在如上图(b)中,模块d1,d2,d3,d4,d5是对各个模块做单元测试时建立的驱动模块,s1,s2,s3,s4,s5是为单元测试而建立的桩模块。这种一次性组装方式试图在辅助模块的协助下,在分别完成模块单元测试的基础上,将所测模块连接起来进行测试。但是由于程序中不可避免地存在涉及模块间接口、全局数据结构等方面的问题,所以一次试运行成功的可能性并不很大。其结果是,发现有错误,却茫然找不到原因。查错和改错都会遇到困难。
               ②增殖式组装方式。
               这种组装方式又称渐增式组装,是首先对一个个模块进行模块测试,然后将这些模块逐步组装成较大的系统,在组装的过程中边连接边测试,以发现连接过程中产生的问题。最后通过增殖逐步组装成为要求的软件系统。
               . 自顶向下的增殖方式。这种组装方式是将模块按系统程序结构,沿控制层次自顶向下进行组装。其步骤如下:首先以主模块作为所测模块兼驱动模块,所有直属于主模块的下属模块全部用桩模块代替,对主模块进行测试。再采用深度优先(如下图所示为自顶向下的增殖方式)或广度优先的策略,用实际模块替换相应的桩模块,再用桩模块代替它们的直接下属模块,与已测试的模块或子系统组装成新的子系统。然后,进行回归测试(即重新执行以前做过的全部测试或部分测试),排除组装过程中引入新的错误的可能。最后,判断是否所有的模块都已组装到系统中。是,则结束测试;否则,转到B去执行。
               
               自顶向下的增殖方式
               自顶向下的增殖方式在测试过程中较早地验证了主要的控制和判断点。在一个功能划分合理的程序模块结构中,判断常常出现在较高的层次里,因而,能够较早地遇到这种问题。如果主要控制有问题,尽早发现它能够减少以后的返工,这是十分必要的。如果选用按深度方向组装的方式,可以首先实现和验证一个完整的软件功能,可先对逻辑输入的分支进行组装和测试,检查和克服潜藏的错误和缺陷,验证其功能的正确性,就为其后对主要加工分支的组装和测试提供了保证。此外,功能可行性较早地得到证实,还能够增强开发者和用户成功的信心。
               . 自底向上的增殖方式。这种组装方式是从程序模块结构的最底层模块开始组装和测试。因为模块是自底向上进行组装的,对于一个给定层次的模块,它的子模块(包括子模块的所有下属模块)已经组装并测试完成,所以不再需要桩模块。在模块的测试过程中需要从子模块得到的信息可以通过直接运行子模块得到。自底向上增殖的步骤如下:首先由驱动模块控制最底层模块的并行测试;也可以把最底层模块组合成实现某一特定软件功能的簇,由驱动模块控制它进行测试。再用实际模块代替驱动模块,与它已测试的直属子模块组装成为子系统。然后,为子系统配备驱动模块,进行新的测试。最后判断是否已组装到达主模块。是,则结束测试;否则,执行B。
               以如下图一(a)所示的一次性组装方式系统结构为例,可以用如下图二说明自底向上组装和测试的顺序。
               
               一次性组装方式
               
               自底向上的增殖方式
               . 混合增殖式测试。自顶向下增殖的方式和自底向上增殖的方式各有优缺点。一般来讲,一种方式的优点是另一种方式的缺点。
               自顶向下增殖方式的缺点是需要建立桩模块。要使桩模块能够模拟实际子模块的功能十分困难,因为,桩模块在接收了所测模块发送的信息后,需要按照它所代替的实际子模块功能返回应该回送的信息,这必将增加建立桩模块的复杂度,而且导致增加一些附加的测试。同时,涉及复杂算法和真正输入/输出的模块一般在底层,它们是最容易出问题的模块,到组装和测试的后期才遇到这些模块,一旦发现问题,就会导致过多的回归测试。而自顶向下增殖方式的优点是能够较早地发现主要控制方面的问题。
               自底向上增殖方式的缺点是“程序一直未能作为一个实体存在,直到最后一个模块加上去后才形成一个实体”。就是说,在自底向上组装和测试的过程中,对主要的控制直到最后才接触到。这种方式的优点是不需要桩模块,而建立驱动模块一般比建立桩模块容易,同时由于涉及到复杂算法和真正输入/输出的模块最先得到组装和测试,可以把最容易出问题的部分在早期解决。此外自底向上增殖的方式可以实施多个模块的并行测试,提高测试效率。因此,通常是把以上两种方式结合起来进行组装和测试。
               在进行集成测试时,测试者应当确定关键模块,对这些关键模块及早进行测试。关键模块至少应具有以下几种特征之一:
               . 满足某些软件需求;
               . 在程序的模块结构中位于较高的层次(高层控制模块);
               . 较复杂、较易发生错误;
               . 有明确定义的性能要求。
               在做回归测试时,也应该集中测试关键模块的功能。
               . 集成测试的组织和实施。
               集成测试是一种正规测试过程,必须精心计划,并与单元测试的完成时间协调起来。在制定测试计划时,应考虑如下因素:
               ①采用何种系统组装方法来进行集成测试。
               ②集成测试过程中连接各个模块的顺序。
               ③模块代码编制和测试进度是否与集成测试的顺序一致。
               ④测试过程中是否需要专门的硬件设备。
               解决了上述问题之后,就可以列出各个模块的编制、测试计划表,标明每个模块单元测试完成的日期、首次集成测试的日期、集成测试全部完成的日期、以及需要的测试用例和所期望的测试结果。
               在缺少软件测试所需要的硬件设备时,应检查该硬件的交付日期是否与集成测试计划一致。例如,若测试需要数字化仪和绘图仪,则相应的测试应安排在这些设备能够投入使用之时,并要为硬件的安装和交付使用保留一段时间,以留下时间余量。此外,在测试计划中需要考虑测试所需软件(驱动模块、桩模块、测试用例生成程序等)的准备情况。
               . 集成测试完成的标志。
               集成测试完成的标志主要有以下几项。
               ①成功地执行了测试计划中规定的所有集成测试。
               ②修正了所发现的错误。
               ③测试结果通过了专门小组的评审。
               集成测试应由专门的测试小组来进行,测试小组由有经验的系统设计人员和程序员组成。整个测试活动要在评审人员出席的情况下进行。
               在完成预定的集成测试工作之后,测试小组应负责对测试结果进行整理、分析,形成测试报告。测试报告中要记录实际的测试结果在测试中发现的问题、解决这些问题的方法以及解决之后再次测试的结果。此外还应提出目前不能解决、还需要管理人员和开发人员注意的一些问题,提供测试评审和最终决策,以提出处理意见。
               集成测试需要提交的文档有集成测试计划、集成测试规格说明和集成测试分析报告。
               确认测试
               确认测试的任务是验证软件的功能和性能及其他特性是否与用户的要求一致。对软件的功能和性能要求在软件需求规格说明中明确规定。确认测试一般包括有效性测试和软件配置复查,确认测试一般由独立的第三方测试机构进行。
               . 进行有效性测试。
               有效性测试是在模拟的环境下,运用黑盒测试的方法,验证所测软件是否满足需求规格说明书列出的需求。为此,需要制定测试计划、测试步骤以及具体的测试用例。通过实施预定的测试计划和测试步骤,确定软件的特性是否与需求相符,确保所有的软件功能需求都能得到满足,所有的软件性能需求都能达到。所有的文档都是正确且便于使用的。同时,对其他软件需求,例如可移植性、可靠性、易用性、兼容性、可维护性等,也都要进行测试,确认是否满足。
               在全部软件测试的测试用例运行完后,所有的测试结果可以分为两类。
               ①测试结果与预期的结果相符。这说明软件的这部分功能或性能特征与需求规格说明书相符合,从而接受了这部分程序。
               ②测试结果与预期的结果不符。这说明软件的这部分功能或性能特征与需求规格说明不一致,因此要为它提交一份问题报告。
               . 软件配置复查。
               软件配置复查的目的是保证软件配置的所有成分都齐全,各方面的质量都符合要求,具有维护阶段所必须的细节,而且已经编排好分类的目录。
               在确认测试的过程中,还应当严格遵守用户手册和操作手册中规定的使用步骤,以便检查文档资料的完整性和正确性。
               系统测试
               系统测试是将通过集成测试的软件,作为整个基于计算机系统的一个元素,与计算机硬件、外设、某些支持软件、数据和人员等其他系统元素结合在一起,在实际或者模拟运行(使用)环境下,对计算机系统进行一系列测试。
               系统测试的目的在于通过与系统的需求定义作比较,发现软件与系统定义不符合或与之矛盾的地方。
               验收测试
               验收测试是以用户为主的测试。软件开发人员和质量保证人员也应参加。由用户参加设计测试用例。使用用户界面输入测试数据,并分析测试的输出结果。一般使用生产中的实际数据进行测试。
               目前在国内实际软件开发,特别是系统集成的过程中,验收测试往往在系统测试完成后、项目最终交付前进行。验收测试的测试计划、测试方案与测试案例一般由开发方制定,由用户方与监理方联合进行评审。验收小组由开发方、用户方、监理方代表、主管单位领导及行业专家构成。与确认测试及系统测试不同的是,验收测试往往不是对系统的全覆盖测试,而是针对用户的核心业务流程进行的测试;同时,测试的执行人员也不是开发方的测试组成员,而是由用户方的使用人员完成。
               近年来,越来越多的开发方及用户方认识到对项目进行最终验收测试的重要意义,因此,由第三方完成的专业化全覆盖型技术测试得到了广泛应用。由专门从事测试工作的第三方机构,根据系统的需求分析、用户手册、培训手册等,在开发人员及最终使用人员的配合下,完成对系统全面的测试工作。
 
       过程模型
        产品开发生命周期通常使用过程模型进行表示。过程模型习惯上也称为开发模型,它是系统开发全部过程、活动和任务的结构框架。典型的开发过程模型有瀑布模型、增量模型、演化模型(原型模型、螺旋模型)、喷泉模型、基于构件的开发模型和形式化方法模型等。
               瀑布模型(Waterfall Model)
               瀑布模型是将系统生存周期各个活动规定为依线性顺序连接的若干阶段的模型,也称为线性模型。它包括需求分析、设计、实现、测试、运行和维护。它规定了由前至后、相互衔接的固定次序,如同瀑布流水,逐级下落,如下图所示。
               
               瀑布模型
               瀑布模型为系统的开发和维护提供了一种有效的管理模式,根据这一模式制定开发计划,进行成本预算,组织开发力量,以项目的阶段评审和文档控制为手段有效地对整个开发过程进行指导,所以它是以文档作为驱动、适合于系统需求很明确的软件项目的模型。
               瀑布模型假设一个待开发的系统需求是完整的、简明的、一致的,而且可以先于设计和实现产生。瀑布模型的优点是,容易理解,管理成本低;强调开发的阶段性早期计划及需求调查和产品测试。不足之处是,客户必须能够完整、正确和清晰地表达他们的需要;在开始的两个或三个阶段中,很难评估真正的进度状态;当接近项目结束时,出现了大量的集成和测试工作;直到项目结束之前,都不能演示系统的能力。在瀑布模型中,需求或设计中的错误往往只有到了项目后期才能够被发现,对于项目风险的控制能力较弱,从而导致项目常常延期完成,开发费用超出预算。
               瀑布模型的一个变体是V模型,如下图所示。V模型描述了质量保证活动和沟通、建模相关活动以及早期构建相关的活动之间的关系。随着团队工作沿着V模型左侧步骤向下推进,基本问题需求逐步细化,形成问题及解决方案的技术描述。一旦编码结束,团队沿着V模型右侧的步骤向上推进工作,其实际上是执行了一系列测试(质量保证活动),这些测试验证了团队沿着V模型左侧步骤向下推进过程中所生成的每个模型。V模型提供了一种将验证确认活动应用于早期软件工程工作中的方法。
               
               V模型
               增量模型(Incremental Model)
               增量模型融合了瀑布模型的基本成分和原型实现的迭代特征,它假设可以将需求分段为一系列增量产品,每一增量可以分别开发。该模型采用随着日程时间的进展而交错的线性序列,每一个线性序列产生软件的一个可发布的“增量”,如下图所示。当使用增量模型时,第1个增量往往是核心的产品。客户对每个增量的使用和评估都作为下一个增量发布的新特征和功能,这个过程在每一个增量发布后不断重复,直到产生最终的完善产品。增量模型强调每一个增量均发布一个可操作的产品。
               
               增量模型
               增量模型作为瀑布模型的一个变体,具有瀑布模型的所有优点。此外,它还有以下优点:第一个可交付版本所需要的成本和时间很少;开发由增量表示的小系统所承担的风险不大;由于很快发布了第一个版本,因此可以减少用户需求的变更;运行增量投资,即在项目开始时,可以仅对一个或两个增量投资。
               增量模型有以下不足之处:如果没有对用户的变更要求进行规划,那么产生的初始增量可能会造成后来增量的不稳定;如果需求不像早期思考的那样稳定和完整,那么一些增量就可能需要重新开发,重新发布;管理发生的成本、进度和配置的复杂性可能会超出组织的能力。
               原型模型(Prototype Model)
               并非所有的需求都能够预先定义,大量的实践表明,在开发初期很难得到一个完整的、准确的需求规格说明。这主要是由于客户往往不能准确地表达对未来系统的全面要求,开发者对要解决的应用问题模糊不清,以至于形成的需求规格说明常常是不完整的、不准确的,有时甚至是有歧义的。此外,在整个开发过程中,用户可能会产生新的要求,导致需求的变更。而瀑布模型难以适应这种需求的不确定性和变化,于是出现了快速原型(rapid prototype)这种新的开发方法。原型方法比较适合于用户需求不清、需求经常变化的情况,是一种演化模型(Evolutionary Model)。当系统规模不是很大也不太复杂时,采用该方法比较好。
               原型是预期系统的一个可执行版本,反映了系统性质的一个选定的子集。一个原型不必满足目标软件的所有约束,其目的是能快速、低成本地构建原型。当然,能够采用原型方法是因为开发工具的快速发展,使得能够迅速地开发出一个让用户看得见、摸得着的系统框架。这样,对于计算机不是很熟悉的用户就可以根据这个框架提出自己的需求。开发原型系统首先确定用户需求,开发初始原型,然后征求用户对初始原型的改进意见,并根据意见修改原型。原型模型如下图所示。
               
               原型模型
               原型模型开始于沟通,其目的是定义软件的总体目标,标识需求,然后快速制定原型开发的计划,确定原型的目标和范围,采用快速射击的方式对其进行建模,并构建原型。被开发的原型应交付给客户使用,并收集客户的反馈意见,这些反馈意见可在下一轮中对原型进行改进。在前一个原型需要改进,或者需要扩展其范围的时候,进入下一轮原型的迭代开发。
               根据使用原型的目的不同,原型可以分为探索型原型、实验型原型和演化型原型3种。探索型原型的目的是要弄清目标的要求,确定所希望的特性,并探讨多种方案的可行性。实验型原型的目的是验证方案或算法的合理性,是在大规模开发和实现前,用于考查方案是否合适、规格说明是否可靠等。演化型原型的目的是将原型作为目标系统的一部分,通过对原型的多次改进,逐步将原型演化成最终的目标系统。
               螺旋模型(Spiral Model)
               对于复杂的大型系统,开发一个原型往往达不到要求。螺旋模型将瀑布模型和演化模型结合起来,加入了两种模型均忽略的风险分析,弥补了这两种模型的不足。螺旋模型是一种演化模型。
               螺旋模型将开发过程分为几个螺旋周期,每个螺旋周期大致和瀑布模型相符合,如下图所示。在每个螺旋周期分为如下4个工作步骤。
               
               螺旋模型
               (1)制订计划。确定系统的目标,选定实施方案,明确项目开发的限制条件。
               (2)风险分析。分析所选的方案,识别风险,消除风险。
               (3)实施工程。实施系统开发,验证阶段性产品。
               (4)用户评估。评价开发工作,提出修正建议,建立下一个周期的开发计划。
               螺旋模型强调风险分析,使得开发人员和用户对每个演化层出现的风险有所了解,继而做出应有的反应。因此特别适用于庞大、复杂并且具有高风险的系统。
               与瀑布模型相比,螺旋模型支持用户需求的动态变化,为用户参与软件开发的所有关键决策提供了方便,有助于提高产品的适应能力,并且为项目管理人员及时调整管理决策提供了便利,从而降低了系统开发的风险。在使用螺旋模型进行系统开发时,需要开发人员具有相当丰富的风险评估经验和专门知识。另外,过多的迭代次数会增加开发成本,延迟提交时间。
               喷泉模型(water fountain model)
               喷泉模型是一种以用户需求为动力,以对象作为驱动的模型,适合于面向对象的开发方法。它克服了瀑布模型不支持软件重用和多项开发活动集成的局限性。喷泉模型使开发过程具有迭代性和无间隙性,如下图所示。迭代意味着模型中的开发活动常常需要重复多次,在迭代过程中不断地完善系统。无间隙是指在开发活动(如分析、设计、编码)之间不存在明显的边界,也就是说,它不像瀑布模型那样,需求分析活动结束后才开始设计活动,设计活动结束后才开始编码活动,而是允许各开发活动交叉、迭代地进行。
               
               喷泉模型
               喷泉模型的各个阶段没有明显的界限,开发人员可以同步进行。其优点是可以提高项目开发效率,节省开发时间。由于喷泉模型在各个开发阶段是重叠的,在开发过程中需要大量的开发人员,不利于项目的管理。此外这种模型要求严格管理文档,使得审核的难度加大。
               形式化方法模型(Formal Methods Model)
               形式化方法是用于将复杂系统建模为数据实体的技术,是建立在严格数学基础上的一种开发方法,其主要活动是生成计算机软件形式化的数学规格说明。
               形式化方法用严格的数学语言和语义描述功能规约和设计规约,通过数学的分析和推导,易于发现需求的歧义性、不完整性和不一致性,易于对分析模型、设计模型和程序进行验证。通过数学的演算,使得从形式化功能规约到形式化设计规约,以及从形式化设计规约到程序代码的转换成为可能。
               统一过程(UP)模型
               统一过程的特色是“用例和风险驱动,以架构为中心,迭代的增量开发过程”。迭代的意思是将整个产品开发项目划分为许多个小的“袖珍项目”,每个“袖珍项目”都包含正常项目的所有元素:计划、分析和设计、构造、集成和测试,以及内部和外部发布。
               统一过程定义了5个阶段及其制品。
               (1)起始阶段(inception phase)。起始阶段专注于项目的初创活动,产生的主要工作产品有构想文档(vision document)、初始用例模型、初始项目术语表、初始业务用例、初始风险评估、项目计划(阶段及迭代)、业务模型以及一个或多个原型(需要时)。本阶段的里程碑是生命周期目标。
               (2)精化阶段(elaboration phase)。精化阶段在理解了最初的领域范围之后进行需求分析和架构演进,产生的主要工作产品有用例模型、补充需求(包括非功能需求)、分析模型、体系结构描述、可执行的体系结构原型、初步的设计模型、修订的风险列表、项目计划(包括迭代计划、调整的工作流、里程碑和技术工作产品)以及初始用户手册。本阶段的里程碑是生命周期架构。
               (3)构建阶段(construction phase)。构建阶段关注系统的构建,产生实现模型,产生的主要工作产品有设计模型、系统构件、集成的增量、测试计划及步骤、测试用例以及支持文档(用户手册、安装手册和对于并发增量的描述)。初始运作功能。
               (4)移交阶段(transition phase)。移交阶段关注于系统提交方面的工作,产生系统增量,产生的主要工作产品有提交的系统增量、β测试报告和综合用户反馈。本阶段的里程碑是产品发布版本。
               (5)生产阶段(production phase)。生产阶段对持续使用的软件进行监控,提供运行环境(基础设施)的支持,提交并评估缺陷报告和变更请求。
               在每个迭代中,有5个核心工作流:捕获系统应该做什么的需求工作流,精化和结构化需求的分析工作流,用系统构架实现需求的设计工作流,构造系统的实现工作流,验证实现是否如期望那样工作的测试工作流。
               统一过程的典型代表是RUP(Rational Unified Process),主要针对前4个技术阶段。RUP是UP的商业扩展,完全兼容UP,但比UP更完整、更详细。
               敏捷方法(Agile Development)
               敏捷开发的总体目标是通过“尽可能早地、持续地对有价值的软件的交付”使客户满意。通过在产品开发过程中加入灵活性,敏捷方法使用户能够在开发周期的后期增加或改变需求。
               敏捷过程的典型方法有很多,每一种方法基于一套原则,这些原则实现了敏捷方法所宣称的理念(敏捷宣言)。
               (1)极限编程(XP)。XP是一种轻量级(敏捷)、高效、低风险、柔性、可预测的、科学的软件开发方式。它由价值观、原则、实践和行为4个部分组成,彼此相互依赖、关联,并通过行为贯穿于整个生存周期。
               .4大价值观:沟通、简单性、反馈和勇气。
               .5个原则:快速反馈、简单性假设、逐步修改、提倡更改和优质工作。
               .12个最佳实践:计划游戏(快速制订计划、随着细节的不断变化而完善)、小型发布(系统的设计要能够尽可能早地交付)、隐喻(找到合适的比喻传达信息)、简单设计(只处理当前的需求,使设计保持简单)、测试先行(先写测试代码,然后再编写程序)、重构(重新审视需求和设计,重新明确地描述它们以符合新的和现有的需求)、结队编程、集体代码所有制、持续集成(可以按日甚至按小时为客户提供可运行的版本)、每周工作40个小时、现场客户和编码标准。
               (2)水晶法(Crystal)。水晶法认为每一个不同的项目都需要一套不同的策略、约定和方法论。
               (3)并列争球法(Scrum)。并列争球法使用迭代的方法,其中,把每30天一次的迭代称为一个“冲刺”,并按需求的优先级别来实现产品。多个自组织和自治的小组并行地递增实现产品。协调是通过简短的日常情况会议来进行,就像橄榄球中的“并列争球”。。
               (4)自适应软件开发(ASD)。ASD有6个基本的原则:有一个使命作为指导;特征被视为客户价值的关键点;过程中的等待是很重要的,因此“重做”与“做”同样关键;变化不被视为改正,而是被视为对软件开发实际情况的调整;确定的交付时间迫使开发人员认真考虑每一个生产的版本的关键需求;风险也包含其中。


 题号导航      2018年下半年 系统架构设计师 上午试卷 综合知识   本试卷我的完整做题情况 
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
↓第26题