免费智能真题库 > 历年试卷 > 网络规划设计师 > 2013年下半年 网络规划设计师 上午试卷 综合知识
  第62题      
  知识点:   负载均衡   交换机   千兆以太网   确定可靠性措施   以太网   WLAN   建筑   结构设计   可靠性   网络拓扑结构设计
  关键词:   WLAN   服务器   负载均衡   骨干网   故障   核心层   汇聚层   交换机   接入层   可靠性   千兆以太网   数据   网络拓扑结构   需求   拓扑结构   网络   网络拓扑   以太网        章/节:   网络分析与设计过程       

 
某公司主营证券与期货业务,有多个办公网点,要求企业内部用户能够高速地访问企业服务器,并且对网络的可靠性要求很高。工程师给出设计方案:
①采用核心层、汇聚层、接入层三层结构;
②骨干网使用千兆以太网
③为了不改变已有建筑的结构,部分网点采用WLAN组网;
④根据企业需求,将网络拓扑结构设计为双核心来进行负载均衡,当其中一个核心交换机出现故障时,数据能够转换到另一台交换机上,起到冗余备份的作用。
网络拓扑如下图所示。

针对网络的拓扑设计,你的评价是(62)。
 
 
  A.  恰当合理
 
  B.  不恰当,两个核心交换机都应直接上联到路由器上,保证网络的可靠性
 
  C.  不恰当,为保证高速交换,接入层应使用三层交换机
 
  D.  不恰当,为保证核心层高速交换,服务器应放在接入层
 
 
 

 
  第50题    2016年下半年  
   59%
自然灾害严重威胁数据的安全,存储灾备是网络规划与设计中非常重要的环节。
传统的数据中心存储灾备一般采用主备模式,存在..
  第53题    2015年下半年  
   47%
某高校欲构建财务系统,使得用户可通过校园网访问该系统。根据需求,公司给出如下2套方案。
方案一:
1)出口设备采..
  第32题    2012年下半年  
   38%
网管中心在进行服务器部署时应充分考虑到功能、服务提供对象、流量、安全等因素。某网络需要提供的服务包括VOD服务、网络流量监控..
   知识点讲解    
   · 负载均衡    · 交换机    · 千兆以太网    · 确定可靠性措施    · 以太网    · WLAN    · 建筑    · 结构设计    · 可靠性    · 网络拓扑结构设计
 
       负载均衡
        负载均衡是由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无需其他服务器的辅助。通过某种负载分担技术,将外部发送来的请求均匀地分配到对称结构中的某一台服务器上,而接收到请求的服务器独立地回应客户的请求。
        目前,比较常用的负载均衡技术主要有:
        (1)基于DNS的负载均衡。在DNS中为多个地址配置同一个名字,因而查询这个名字的客户机将得到其中一个地址,从而使得不同的客户访问不同的服务器,达到负载均衡的目的。DNS负载均衡是一种简单而有效的方法,但是它不能区分服务器的差异,也不能反映服务器的当前运行状态。
        (2)代理服务器负载均衡。使用代理服务器,可以将请求转发给内部的服务器,使用这种加速模式可以提升静态网页的访问速度。然而,可以考虑这样一种技术,使用代理服务器将请求均匀转发给多台服务器,从而达到负载均衡的目的。
        (3)地址转换网关负载均衡。支持负载均衡的地址转换网关,可以将一个外部IP地址映射为多个内部IP地址,对每次TCP连接请求动态使用其中一个内部地址,达到负载均衡的目的。
        (4)协议内部支持负载均衡。有的协议内部支持与负载均衡相关的功能,如HTTP协议中的重定向能力等。
        (5)NAT(Network Address Translation,网络地址转换)负载均衡。NAT是将一个IP地址转换为另一个IP地址,一般用于未经注册的内部地址与合法的、已获注册的Internet IP地址间进行转换。适用于解决Internet IP地址紧张、不想让网络外部知道内部网络结构等的场合下。
        (6)反向代理负载均衡。普通代理方式是代理内部网络用户访问Internet上服务器的连接请求,客户端必须指定代理服务器,并将本来要直接发送到Internet上服务器的连接请求发送给代理服务器处理。反向代理方式是指以代理服务器来接受Internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给Internet上请求连接的客户端,此时代理服务器对外就表现为一个服务器。反向代理负载均衡技术是把将来自Internet上的连接请求以反向代理的方式动态地转发给内部网络上的多台服务器进行处理,从而达到负载均衡的目的。
        (7)混合型负载均衡。在有些大型网络,由于多个服务器群内硬件设备、各自的规模、提供的服务等的差异,可以考虑给每个服务器群采用最合适的负载均衡方式,然后又在这多个服务器群间再一次负载均衡或集群起来以一个整体向外界提供服务(即把这多个服务器群当做一个新的服务器群),从而达到最佳的性能。这种方式称为混合型负载均衡,这种方式有时也用于单台均衡设备的性能不能满足大量连接请求的情况下。
 
       交换机
        机架式交换机是一种插槽式的交换机,这种交换机扩展性较好,可支持不同的网络类型,如以太网、快速以太网、千兆位以太网、ATM、令牌环及FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)等,但价格较贵。固定配置式带扩展槽交换机是一种有固定端口数并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以支持其他类型的网络,价格居中。固定配置式不带扩展槽交换机仅支持一种类型的网络,但价格最便宜。
        交换机的性能指标主要有机架插槽数、扩展槽数、最大可堆叠数、最小/最大端口数、支持的网络类型、背板吞吐量、缓冲区大小、最大物理地址表大小、最大电源数、支持协议和标准、支持第3层交换、支持多层(4~7层)交换、支持多协议路由、支持路由缓存、支持网管类型、支持端口镜像、服务质量(Quality of Service,QoS)、支持基于策略的第2层交换、每端口最大优先级队列数、支持最小/最大带宽分配、冗余、热交换组件、负载均衡等。
 
       千兆以太网
        千兆位以太网是在以太网技术的改进和提高的基础上,再次将100Mb/s的快速以太网的数据传输速率提高了10倍,使其达到了每秒千兆位的网络系统(1000Mb/s)。与快速以太网一样,千兆以太网也是IEEE 802.3以太网标准的扩展。所以千兆以太网也可以在原来的以太网系统基础上实现平滑的过渡并完全升级。并且同样可以大大节省因网络系统升级所带来的各种费用和开销。
        千兆以太网为了能够把数据传输速率提高到1000Mb/s的水平,因此对物理层规范再一次做了很大改动。但是为了确保和以前的10Mb/s和100Mb/s的以太网相兼容,与前面的快速以太网一样,千兆以太网也沿用了IEEE 802.3规范所采用的CSMA/CD技术,也即就是在数据链路层以上部分没有改变,但在数据链路层以下,千兆以太网融合了IEEE 802.3/以太网和ANSI X3T11光纤通道两种不同的网络技术,这样千兆以太网不但能够充分利用光纤通道所提供的高速物理接口技术,而且保留了IEEE 802.3/以太网帧的格式,在技术上可以相互兼容,同时还能够支持全双工或半双工模式(通过CSMA/CD),使得千兆位以太网成为高速、宽带网络应用的战略性选择。
        IEEE 802.3z扩展标准是千兆位以太网标准规范。概括地说,它包含的内容有,1000Mb/s通信速率的情况下的支持全双工和半双工操作;采用802.3以太网帧格式;使用CSMA/CD技术;在一个冲突域中支持一个中继器;10Base-T和100Base-T向下兼容;多模光纤连接的最大距离为550m;单模光纤连接的最大距离为3000m;铜基连接距离最大为25m;并开发将基于5类无屏蔽双绞线的连接距离增至100m的技术;8B/10B主要适用于光纤介质和特殊屏蔽铜缆,而5类UTP则使用自己专门的编码/译码方案。
        千兆以太网物理层包括编码/译码,收发器和网络介质3部分,并且其中不同的收发器对应于不同的传输介质类型,如长模或多模光纤(1000Base-LX)、短波多模光纤(1000 Base-SX)、一种高质量的平衡双绞线对的屏蔽铜缆(1000Base-CX),以及5类非屏蔽双绞线(1000 Base-T)。
        (1)1000Base-LX是一种使用长波激光作为信号源的网络介质技术,在收发器上配置波长为1270~1355nm(一般为1300nm)的激光传输器,既可以驱动多模光纤,也可以驱动单模光纤。1000Base-LX所使用的光纤规格:62.5μm多模光纤,50μm多模光纤,9μm单模光纤。其中,使用多模光纤时,在全双工模式下,最长传输距离可以达到550m;使用单模光纤时,全双工模式下的最长有效距离为5000m。连接光纤所使用的SC型光纤连接器与快速以太网100Base-FX所使用的连接器的型号相同。
        (2)1000Base-SX是一种使用短波激光作为信号源的网络介质技术,收发器上所配置的波长为770~860nm(一般为800nm)的激光传输器不支持单模光纤,只能驱动多模光纤。具体包括两种:62.5μm多模光纤,50μm多模光纤。使用62.5μm多模光纤全双工模式下的最长传输距离为275m;使用50μm多模光纤,全双工模式下最长有效距离为550m。1000Base-SX所使用的光纤连接器与1000Base-LX一样也是SC型连接器。
        (3)1000Base-CX是使用铜缆作为网络介质的两种千兆以太网技术之一,另外一种就是将要在后面介绍的1000Base-T。1000Base-T使用的一种特殊规格的高质量平衡双绞线对的屏蔽铜缆,最长有效距离为25m,使用9芯D型连接器连接电缆。1000Base-CX适用于交换机之间的短距离连接,尤其适合千兆主干交换机和主服务器之间的短距离连接。以上连接往往可以在机房配线架上以跨线方式实现,不需要再使用长距离的铜缆或光缆。
        (4)1000Base-T是一种使用5类UTP作为网络传输介质的千兆以太网技术,最长有效距离与100Base-TX一样可以达到100m。用户可以采用这种技术在原有的快速以太网系统中实现从100Mbps到1000Mb/s的平滑升级。与在前面所介绍的其他三种网络介质不同,1000Base-T不支持8B/10B编码/译码方案,需要采用专门的更加先进的编码/译码机制。
 
       确定可靠性措施
        有些网络系统有很高的可靠性要求,如银行系统、证券系统、电话网络等。在设计网络时需要满足用户在网络可靠性方面的要求。保证网络的可靠性有如下几种手段,在实际设计时需要进行综合考虑,进行选择和组合,这种才能得到最好的设计效果。
        (1)冗余线路。冗余线路指在网络中设计更多的线路,保证某些线路出现问题,还可以使用另外的线路进行通信。例如,双绞线由于比较细,比较容易出线断路的问题,一般的双绞线是由4个线对组成的,但使用时却经常使用两对线,另两对线备用,如果在使用的两对线中一对或两对出现问题,则可以使用另两对线来替换,而不必费时费力去重新布线。在主干线路上,常常需要多布几根线路,以保证整个系统的可靠性。
        (2)冗余接口。给设备预留一些冗余接口,通常是能保证网络系统的扩展性,同时这样也可以给系统可靠性提供一些保证。一方面某些接口损坏后可以用另外的接口来代替;另一方面一些网络设备由于质量或者其他原因,几个接口可能存在一些冲突,这时对接口进行一下调整就往往能解决这些冲突。
        (3)冗余通路。给一些重要的设备如服务器设置两个以上的通路,可以保证这些设备的可靠性,如给服务器设置两个网卡,两个网卡都连接到网络上,这样如果一个线路出现故障,另外一个线路还能继续工作。FDDI采用双路网络,它本身就有冗余通路。
        (4)备用设备。给使用频度高的设备准备一个备用设备,可以在此设备出现问题时进行及时的更换,这样可以有效地提高系统维修的速度,让系统几乎能不间断地运行。
        (5)设备保护。UPS是可以保证停电时系统还能正常运行的设备,同时它还能在电压出现异常时保护设备不被损坏,所以在重要的设备上都要设UPS保护。另外,还有一些其他的措施可以在物理上对设备进行保护,如避雷针、保险丝、机架和线路防护等。
        (6)子网分离。子网分离是使用交换机、路由器等设备分离子网,可以避免出现问题的子网向其他子网蔓延,避免出现广播风暴,可以保证另外的子网中数据传输的可靠性。
 
       以太网
        以太网是最早使用的局域网,也是目前使用最广泛的网络产品。以太网有10Mb/s、100Mb/s、1000Mb/s、10Gb/s等多种速率。
               以太网传输介质
               以太网比较常用的传输介质包括同轴电缆、双绞线和光纤三种,以IEEE 802.3委员会习惯用类似于10Base-T的方式进行命名。这种命名方式由三个部分组成:
               (1)10:表示速率,单位是Mb/s。
               (2)Base:表示传输机制,Base代表基带,Broad代表宽带。
               (3)T:传输介质,T表示双绞线、F表示光纤、数字代表铜缆的最大段长。
               传输介质的具体命名方案如下表所示,了解这些知识是十分必要的。
               
               以太网传输介质表
               
               以太网时隙
               时间被分为离散的区间称为时隙(Slot Time)。帧总是在时隙开始的一瞬间开始发送。一个时隙内可能发送0,1或多个帧,分别对应空闲时隙、成功发送和发生冲突的情况。
                      设置时隙理由
                      在以太网规则中,若发生冲突,则必须让网上每个主机都检测到。信号传播整个介质需要一定的时间。考虑极限情况,主机发送的帧很小,两冲突主机相距很远。在A发送的帧传播到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到了冲突,于是发送阻塞信号。B的阻塞信号还没有传输到A,A的帧已发送完毕,那么A就检测不到冲突,而误认为已发送成功,不再发送。由于信号的传播时延,检测到冲突需要一定的时间,所以发送的帧必须有一定的长度。这就是时隙需要解决的问题。
                      在最坏情况下,检测到冲突所需的时间
                      若A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为τ,假定A在t时刻开始发送一帧,则这个帧在t+τ时刻到达B,若B在t+τ-ε时刻开始发送一帧,则B在t+τ时就会检测到冲突,并发出阻塞信号。阻塞信号将在t+2τ时到达A。所以A必须在t+2τ时仍在发送才可以检测到冲突,所以一帧的发送时间必须大于2τ
                      按照标准,10Mb/s以太网采用中继器时,连接最大长度为2500m,最多经过4个中继器,因此规定对于10Mb/s以太网规定一帧的最小发送时间必须为51.2μs。51.2μs也就是512位数据在10Mb/s以太网速率下的传播时间,常称为512位时。这个时间定义为以太网时隙。512位=64字节,因此以太网帧的最小长度为64字节。
                      冲突发生的时段
                      (1)冲突只能发生在主机发送帧的最初一段时间,即512位时的时段。
                      (2)当网上所有主机都检测到冲突后,就会停发帧。
                      (3)512位时是主机捕获信道的时间,如果某主机发送一个帧的512位时,而没有发生冲突,以后也就不会再发生冲突了。
               提高传统以太网带宽的途径
               以往被淘汰、传统的以太网是以10Mb/s速率半双工方式进行数据传输的。随着网络应用的迅速发展,网络的带宽限制已成为进一步提高网络性能的瓶颈。提高传统以太网带宽的方法主要有以下3种。
                      交换以太网
                      以太网使用的CSMA/CD是一种竞争式的介质访问控制协议,因此从本质上说它在网络负载较低时性能不错,但如果网络负载很大时,冲突会很常见,因此导致网络性能的大幅下降。为了解决这一瓶颈问题,“交换式以太网”应运而生,这种系统的核心是使用交换机代替集线器。交换机的特点是,其每个端口都分配到全部10Mb/s的以太网带宽。若交换机有8个端口或16个端口,那么它的带宽至少是共享型的8倍或16倍(这里不包括由于减少碰撞而获得的带宽)。
                      交换以太网能够大幅度的提高网络性能的主要原因是:
                      .减少了每个网段中的站点的数量;
                      .同时支持多个并发的通信连接。
                      网络交换机有三种交换机制:直通(Cut through)、存储转发(Store and forward)和碎片直通(Fragment free Cut through)。
                      交换式以太网具有几个优点:第一,它保留现有以太网的基础设施,保护了用户的投资;第二,提高了每个站点的平均拥有带宽和网络的整体带宽;第三,减少了冲突,提高了网络传输效率。
                      全双工以太网
                      全双工技术可以提供双倍于半双工操作的带宽,即每个方向都支持10Mb/s,这样就可以得到20Mb/s的以太网带宽。当然这还与网络流量的对称度有关。
                      全双工操作吸引人的另一个特点是它不需要改变原来10Base-T网络中的电缆布线,可以使用和10Base-T相同的双绞线布线系统,不同的是它使用一对双绞线进行发送,而使用另一对进行接收。这个方法是可行的,因为一般10Base-T布线是有冗余的(共4对双绞线)。
                      高速服务器连接
                      众多的工作站在访问服务器时可能会在服务器的连接处出现瓶颈,通过高速服务器连接可以解决这个问题。使用带有高速端口的交换机(如24个10Mb/s端口,1个100Mb/s或1000Mb/s高速端口),然后再把服务器接在高速端口上并使用全双工操作。这样服务器就可以实现与网络200Mb/s或2000Mb/s的连接。
               以太网的帧格式
               以太网帧的格式如下图所示,包含的字段有前导码、目的地址、源地址、数据类型、发送的数据,以及帧校验序列等。这些字段中除了数据字段是变长以外,其余字段的长度都是固定的。
               
               以太网的帧结构
               注:字段的长度以字节为单位
               前导码(P)字段占用8字节。
               目的地址(DA)字段和源地址(SA)字段都是占用6字节的长度。目的地址用于标识接收站点的地址,它可以是单个的地址,也可以是组地址或广播地址,当地址中最高字节的最低位设置为1时表示该地址是一个多播地址,用十六进制数可表示为01:00:00:00:00:00,假如全部48位(每字节8位,6字节即48位)都是1时,该地址表示是一个广播地址。源地址用于标识发送站点的地址。
               类型(Type)字段占用两字节,表示数据的类型,如0x0800表示其后的数据字段中的数据包是一个IP包,而0x0806表示ARP数据包,0x8035表示RARP数据包。
               数据(Data)字段占用46~1500个不等长的字节数。以太网要求最少要有46字节的数据,如果数据不够长度,必须在不足的空间插入填充字节来补充。
               帧校验序列(FCS)字段是32位(即4字节)的循环冗余码。
 
       WLAN
        WLAN(Wireless Local Area Network)是利用无线通信技术在一定的局部范围内建立的,是计算机网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,提供传统有线局域网的功能。WLAN的覆盖范围一般在100m以内,通过桥接可以达到更大的覆盖范围。传输介质为红外线IR或射频RF波段,以后者使用居多。
        由于WLAN是基于计算机网络与无线通信技术的,在计算机网络结构中,逻辑链路控制(Logic Link Contros,LLC)层及其之上的应用层对不同物理层的要求可以是相同的,也可以是不同的,因此,WLAN标准主要是针对物理层和媒质访问控制层(Media Access Control,MAC),涉及到所使用的无线频率范围、空中接口通信协议等技术规范与技术标准。
        (1)IEEE 802.11。1990年IEEE 802标准化委员会成立IEEE 802.11WLAN标准工作组。IEEE 802.11(又称Wi-Fi,Wireless Fidelity,无线保真)是在1997年6月由大量的局域网及计算机专家审定通过的标准,该标准定义了物理层和媒体访问控制(MAC)规范。物理层定义了数据传输的信号特征和调制,定义了两个RF传输方法和一个红外线传输方法,RF传输标准是跳频扩频和直接序列扩频,工作在2.4000~2.4835GHz频段。
        (2)IEEE 802.11b。1999年9月IEEE 802.11b被正式批准,该标准规定WLAN工作频段在2.4~2.4835GHz,数据传输速率达到11Mb/s,传输距离控制在50~150英寸。该标准是对IEEE 802.11的一个补充,采用补偿编码键控调制方式,采用点对点模式和基本模式两种运行模式。在数据传输速率方面可以根据实际情况在11Mb/s、5.5Mb/s、2Mb/s、1Mb/s的不同速率间自动切换,它改变了WLAN设计状况,扩大了WLAN的应用领域。
        (3)IEEE 802.11a。1999年,IEEE 802.11a标准制定完成,该标准规定WLAN工作频段在5.15~8.825GHz,数据传输速率达到54Mb/s或72Mb/s(Turbo),传输距离控制在10~100m。该标准也是IEEE 802.11的一个补充,扩充了标准的物理层,采用正交频分复用(Orthogonal Frequency Division Modulation,OFDM)的独特扩频技术,可提供25Mb/s的无线ATM接口和10Mb/s的以太网无线帧结构接口,支持多种业务,如话音、数据和图像等,一个扇区可以接入多个用户,每个用户可带多个用户终端。
        (4)IEEE 802.11g。目前,IEEE推出了最新版本IEEE 802.11g认证标准,该标准提出拥有IEEE 802.11a的传输速率,安全性较IEEE 802.11b好,采用两种调制方式,含IEEE 802.11a中采用的OFDM与IEEE 802.11b中采用的CCK,做到与IEEE 802.11a和IEEE 802.11b兼容。
 
       建筑
        在建筑领域,立体显示技术可以给设计专家和工程人员展示设计、装修、美化等各方面的信息,例如使用3D打印机打印建筑模型,这种方法快速、成本低、环保,同时制作精美,完全合乎设计者的要求,能节省大量材料,让使用者能够获得具体细节信息,并在正式施工前完成全部设计工作。
        另外,近年来兴起的3D建筑投影也可看作3D技术在建筑领域的一种创新应用,巨幅墙体投影将艺术视频投影到地标性建筑物的外立面,运用不一样的画面转换产生超乎想象的视觉效果。立体的视觉享受、绕梁的听觉感受、炫酷的激光效果会让观众在不知不觉中驻足、欣赏、理解设计人员想要诠释的中心主旨。
 
       结构设计
        多媒体课件的结构规定了教学软件中各部分教学内容的相互关系及呈现的形式,它反映了教学软件的主要框架及其教学功能,多媒体课件的系统结构大多采用非线性的超媒体结构,在此基础上形成了以下四种组织结构方式。
        ①线性结构:学生顺序地接收信息,从当前帧到下一帧,是一个事先设置好的序列。
        ②树状结构:学生沿着一个树状分支展开学习活动,该树状结构按教学内容的自然逻辑形成。
        ③网状结构:多媒体课件的网状结构是超文本结构,学生可在内容单元之间自由航行,没有预设路径的约束。
        ④复合结构:学生可以在一定范围内自由地航行,但同时受主流信息的线性引导和分层逻辑组织的影响。
 
       可靠性
        (1)完备性。完备性评价指标及测量,如下表所示。
        
        完备性评价指标及测量
        (2)连续性。连续性评价指标及测量,如下表所示。
        
        连续性评价指标及测量
        
        (3)稳定性。稳定性评价指标及测量,如下表所示。
        
        稳定性评价指标及测量
        (4)有效性。有效性评价指标及测量,如下表所示。
        
        有效性评价指标及测量
        (5)可追溯性。可追溯性评价指标及测量,如下表所示。
        
        可追溯性评价指标及测量
        
 
       网络拓扑结构设计
        网络的拓扑结构主要是指园区网络的物理拓扑结构,因为如今的局域网技术首选的是交换以太网技术。采用以太网交换机,从物理连接看拓扑结构可以是星型、扩展星型或树型等结构,从逻辑连接看拓扑结构只能是总线结构。对于大中型网络考虑链路传输的可靠性,可采用冗余结构。确立网络的物理拓扑结构是整个网络方案规划的基础,物理拓扑结构的选择往往和地理环境分布、传输介质与距离、网络传输可靠性等因素紧密相关。选择拓扑结构时,应该考虑的主要因素有:地理环境、传输介质与距离以及可靠性。
   题号导航      2013年下半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第62题    在手机中做本题