免费智能真题库 > 历年试卷 > 网络规划设计师 > 2016年下半年 网络规划设计师 上午试卷 综合知识
  第7题      
  知识点:   测试方法   测试计划   单元测试   黑盒测试   集成测试
  关键词:   测试方法   单元测试   黑盒测试   集成测试计划   模块   测试   测试计划   黑盒   集成测试        章/节:   软件工程       

 
软件集成测试将已通过单元测试的模块集成在一起,主要测试模块之间的协作性。从组装策略而言,可以分为(7)集成测试计划通常是在(8)阶段完成,集成测试一般采用黑盒测试方法
 
 
  A.  批量式组装和增量式组装
 
  B.  自顶向下和自底向上组装
 
  C.  一次性组装和增量式组装
 
  D.  整体性组装和混合式组装
 
 
 

 
  第6题    2013年下半年  
   47%
下列关于面向对象软件测试的说法中,正确的是(6)。
  第3题    2012年下半年  
   62%
CRM是一套先进的管理思想及技术手段,它通过将(3)进行有效的整合,最终为企业涉及到的各个领域提供了集成环境。CRM系统的四个主..
  第7题    2012年下半年  
   39%
以下关于软件生存周期模型的叙述,正确的是(7)。
   知识点讲解    
   · 测试方法    · 测试计划    · 单元测试    · 黑盒测试    · 集成测试
 
       测试方法
        根据是否执行软件,将软件测试方法分为静态测试和动态测试。动态测试是建立在程序的执行过程中,根据是否要求了解被测对象的内部,分为黑盒测试和白盒测试。
               静态测试和动态测试
                      静态测试
                      静态测试方法包括检查单和静态分析方法,对软件文档的静态测试方法主要是以检查单的形式进行文档审查,而对软件代码的静态测试方法一般采用代码审查、代码走查和静态分析的形式进行。
                      静态分析是一种对代码的机械性和程序化的特性分析方法。一般包括控制流分析、数据流分析、接口分析和表达式分析。
                      代码审查是检查代码和设计的一致性、代码执行标准的情况、代码逻辑表达的正确性、代码结构的合理性以及代码的可读性。代码审查应根据所使用的语言和编码规范确定审查所用的检查单,检查单的设计或采用应经过评审。
                      代码走查是由测试人员组成小组,准备一批有代表性的测试用例,集体扮演计算机的角色,按照程序的逻辑,逐步运行测试用例,查找被测软件缺陷。代码走查应由测试人员集体阅读讨论程序,是用“人脑”执行测试用例并检查程序。
                      对于规模较小、安全性要求很高的代码也可进行形式化证明。静态分析常需要使用软件工具进行。
                      静态测试的特点有:不必设计在计算机上执行的测试用例;可充分发挥人的逻辑思维优势;不需特别条件,容易开展;发现错误的同时也就定位了错误,不需作额外的错误定位工作。
                      动态测试
                      动态测试是建立在程序的执行过程中,根据是否对被测对象内部的了解,分为黑盒测试和白盒测试。
                      黑盒测试是一种按照软件功能说明设计测试数据的技术,不考虑程序内部结构和编码结构,也不需考虑程序的语句及路径,只需了解输入/输出之间的关系,依靠这一关系和软件功能说明确定测试数据,判定测试结果的正确性。黑盒测试又称功能测试、数据驱动测试或基于需求的测试。
                      白盒测试是一种按照程序内部逻辑结构和编码结构设计测试数据的技术,可以看到程序内部结构,并根据内部结构设计测试数据,使程序中的每个语句、每个条件分支、每个控制路径的覆盖情况都在测试中受到检验。白盒测试又称结构测试、逻辑测试或基于程序的测试。
                      动态测试的特点有:实际运行被测程序;必须设计测试用例来运行;测试结果分析工作量大,测试工作费时、费力;投入人员多、设备多,处理数据多,要求有较好的管理和工作规程。
                      在软件动态测试过程中,应采用适当的测试方法,实现测试要求。配置项测试和系统测试一般采用黑盒测试方法;部件测试一般主要采用黑盒测试方法,辅助以白盒测试方法;单元测试一般采用白盒测试方法,辅助以黑盒测试方法。
               黑盒测试
               黑盒测试方法一般采用功能分解、等价类划分、边界值分析、判定表、因果图、随机测试、猜错法和正交试验法等。
                      功能分解
                      功能分解是将需求规格说明中每一个功能加以分解,确保各个功能被全面地测试。功能分解是一种较常用的方法。
                      步骤如下:
                      (1)使用程序设计中的功能抽象方法把程序分解为功能单元。
                      (2)使用数据抽象方法产生测试每个功能单元的数据。
                      功能抽象中程序被看成一种抽象的功能层次,每个层次可标识被测试的功能,层次结构中的某一功能有由其下一层功能定义。按照功能层次进行分解,可以得到众多的最低层次的子功能,以这些子功能为对象,进行测试用例设计。
                      数据抽象中,数据结构可以由抽象数据类型的层次图来描述,每个抽象数据类型有其取值集。程序的每一个输入和输出量的取值集合用数据抽象来描述。
                      等价类划分
                      等价类划分是在分析需求规格说明的基础上,把程序的输入域划分成若干部分,然后在每部分中选取代表性数据形成测试用例。
                      步骤如下:
                      (1)划分有效等价类:对规格说明是有意义、合理的输入数据所构成的集合。
                      (2)划分无效等价类:对规格说明是无意义、不合理的输入数据所构成的集合。
                      (3)为每一个等价类定义一个唯一的编号。
                      (4)为每一个等价类设计一组测试用例,确保覆盖相应的等价类。
                      边界值分析
                      边界值分析是针对边界值进行测试的。使用等于、小于或大于边界值的数据对程序进行测试的方法就是边界值分析方法。
                      步骤如下:
                      (1)通过分析需求规格说明,找出所有可能的边界条件。
                      (2)对每一个边界条件,给出满足和不满足边界值的输入数据。
                      (3)设计相应的测试用例。
                      对满足边界值的输入可以发现计算错误,对不满足的输入可以发现域错误。该方法会为其他测试方法补充一些测试用例,绝大多数测试都会用到本方法。
                      判定表
                      判定表由四部分组成:条件桩、条件条目、动作桩、动作条目。任何一个条件组合的取值及其相应要执行的操作构成规则,条目中的每一列是一条规则。
                      条件引用输入的等价类,动作引用被测软件的主要功能处理部分,规则就是测试用例。
                      建立并优化判定表,把判定表中每一列表示的情况写成测试用例。
                      该方法的使用有以下要求:
                      (1)需求规格说明以判定表形式给出,或是很容易转换成判定表。
                      (2)条件的排列顺序不会影响执行哪些操作。
                      (3)规则的排列顺序不会影响执行哪些操作。
                      (4)每当某一规则的条件已经满足,并确定要执行的操作后,不必检验别的规则。
                      (5)如果某一规则的条件的满足,将执行多个操作,这些操作的执行与顺序无关。
                      因果图
                      因果图方法是通过画因果图,把用自然语言描述的功能说明转换为判定表,然后为判定表的每一列设计一个测试用例。
                      步骤如下:
                      (1)分析需求规格说明,引出原因(输入条件)和结果(输出结果),并给每个原因和结果赋予一个标识符。
                      (2)分析需求规格说明中语义的内容,并将其表示成连接各个原因和各个结果的“因果图”。
                      (3)在因果图上标明约束条件。
                      (4)通过跟踪因果图中的状态条件,把因果图转换成有限项的判定表。
                      (5)把判定表中每一列表示的情况生成测试用例。
                      如果需求规格说明中含有输入条件的组合,宜采用本方法。有些软件的因果图可能非常庞大,根据因果图得到的测试用例数目非常多,此时不宜使用本方法。
                      随机测试
                      随机测试指测试输入数据是在所有可能输入值中随机选取的。测试人员只需规定输入变量的取值区间,在需要时提供必要的变换机制,使产生的随机数服从预期的概率分布。该方法获得预期输出比较困难,多用于可靠性测试和系统强度测试。
                      猜错法
                      猜错法是有经验的测试人员,通过列出可能有的错误和易错情况表,写出测试用例的方法。
                      正交实验法
                      正交实验法是从大量的实验点挑出适量的、有代表性的点,应用正交表,合理地安排实验的一种实验设计方法。
                      利用正交实验法来设计测试用例时,首先要根据被测软件的需求规格说明找出影响功能实现的操作对象和外部因素,把它们当作因子,而把各个因子的取值当作状态,生成二无的因素分析表。然后,利用正交表进行各因子的状态的组合,构造有效的测试输入数据集,并由此建立因果图。这样得出的测试用例的数目将大大减少。
               白盒测试
               白盒测试方法一般包括控制流测试(语句覆盖测试、分支覆盖测试、条件覆盖测试、修订的条件/判定覆盖MC/DC、条件组合覆盖测试、路径覆盖测试)、数据流测试、程序变异、程序插桩、域测试和符号求值等。
                      控制流测试
                      控制流测试依据控制流程图产生测试用例,通过对不同控制结构成分的测试验证程序的控制结构。所谓验证某种控制结构即指使这种控制结构在程序运行中得到执行,也称这一过程为覆盖。以下介绍几种覆盖:
                      (1)语句覆盖。语句覆盖要求设计适当数量的测试用例,运行被测程序,使得程序中每一条语句至少被遍历,语句覆盖在测试中主要发现错误语句。
                      (2)分支覆盖。分支覆盖要求设计适当数量的测试用例,运行被测程序,使得程序中每个真值分支和假值分支至少执行一次,分支覆盖也称判定覆盖。
                      (3)条件覆盖。条件覆盖要求设计适当数量的测试用例,运行被测程序,使得每个判断中的每个条件的可能取值至少满足一次。
                      (4)修订的条件/判定覆盖(MC/DC——Modified Condition/Decision Coverage)。修订的条件/判定覆盖要求设计适当数量的测试用例,运行被测程序,使得每个判定中的每个条件都曾独立的影响判定的结果至少一次(独立影响意思是在其他的条件不变的情况下,只改变一个条件,就可影响整个判定的值)。
                      对安全性要求比较高的软件,一般采用此覆盖要求。此覆盖要求在测试用例的效率和数量之间较为平衡。
                      (5)条件组合覆盖。条件组合覆盖要求设计适当数量的测试用例,运行被测程序,使得每个判断中条件的各种组合至少出现一次,这种方法包含了“分支覆盖”和“条件覆盖”的各种要求。
                      (6)路径覆盖。路径覆盖要求设计适当数量的测试用例,运行被测程序,使得程序沿所有可能的路径执行,较大程序的路径可能很多,所以在设计测试用例时,要简化循环次数。
                      以上各种覆盖的控制流测试步骤如下:
                      (1)将程序流程图转换成控制流图。
                      (2)经过语法分析求得路径表达式。
                      (3)生成路径树。
                      (4)进行路径编码。
                      (5)经过译码得到执行的路径。
                      (6)通过路径枚举产生特定路径的测试用例。
                      控制流图是描述程序控制流的一种图示方式,它由结点和定向边构成。控制流图的结点代表一个基本块,定向边代表控制流的方向。其中要特别注意的是,如果判断中的条件表达式是复合条件,即条件表达式是由一个或多个逻辑运算符连接的逻辑表达式,则需要改变复合条件的判断为一系列单个条件的嵌套的判断。控制流图的基本结构如下图所示。
                      
                      控制流图基本结构
                      数据流测试
                      数据流测试是用控制流程图对变量的定义和引用进行分析,查找出未定义的变量或定义了而未使用的变量,这些变量可能是拼错的变量、变量混淆或丢失了语句。数据流测试一般使用工具进行。
                      数据流测试通过一定的覆盖准则,检查程序中每个数据对象的每次定义、使用和消除的情况。
                      数据流测试步骤:
                      (1)将程序流程图转换成控制流图。
                      (2)在每个链路上标注对有关变量的数据操作的操作符号或符号序列。
                      (3)选定数据流测试策略。
                      (4)根据测试策略得到测试路径。
                      (5)根据路径可以获得测试输入数据和测试用例。
                      动态数据流异常检查在程序运行时执行,获得的是对数据对象的真实操作序列,克服了静态分析检查的局限,但动态方式检查是沿与测试输入有关的一部分路径进行的,检查的全面性和程序结构覆盖有关。
                      程序变异
                      程序变异是一种错误驱动测试,是为了查出被测软件在做过其他测试后还剩余一些的小错误。本方法应用于测试工具。
                      程序插装
                      程序插装是向被测程序中插入操作以实现测试目的方法。程序插装不应该影响被测程序的运行过程和功能。
                      有很多的工具有程序插装功能。由于数据记录量大,手工进行将是一件很烦琐的事。
                      域测试
                      域测试是要判别程序对输入空间的划分是否正确。该方法限制太多,使用不方便,供有特殊要求的测试使用。
                      符号求值
                      符号求值是允许数值变量取“符号值”以及数值。符号求值可以检查公式的执行结果是否达到程序预期的目的;也可以通过程序的符号执行,产生出程序的路径,用于产生测试数据。符号求值最好使用工具,在公式分支较少时手工推导也是可行的。
 
       测试计划
        制定一个全面的测试计划是负载测试成功的关键。定义明确的测试计划将确保制定的方案能完成负载测试目标。这部分内容描述负载测试计划过程,包括分析应用程序、定义测试目标、计划方案实施、检查测试目标。在任何类型的系统测试中,制定完善的测试计划是成功完成测试的基础。负载压力测试计划有助于:
        ①构建能够精确地模拟工作环境的测试方案。负载测试指在典型的工作条件下测试应用程序,并检测系统的性能、可靠性和容量等。
        ②了解测试需要的资源。应用程序测试需要硬件、软件和人力资源。开始测试之前,应了解哪些资源可用并确定如何有效地使用这些资源。
        ③以可度量的指标定义测试成功条件。明确的测试目标和标准有助于确保测试成功。仅定义模糊的目标(如检测重负载情况下的服务器响应时间)是不够的。明确的成功条件应类似于“50个客户能够同时查看他们的账户余额,并且服务器响应时间不超过1分钟”。
        下面详细论述负载压力测试计划过程的4个步骤。
               分析应用程序
               负载测试计划的第一步是分析应用程序。应该对硬件和软件组件、系统配置以及典型的使用模型有一个透彻的了解。应用程序分析可以确保使用的测试环境能够在测试中精确地反映应用程序的环境和配置。
                      确定系统组件
                      绘制一份应用程序结构示意图。如果可能,从现有文档中提取一份示意图。如果要测试的应用程序是一个较大的网络系统的一部分,应该确定要测试的系统组件。确保该示意图包括了所有的系统组件,例如客户机、网络、中间件和服务器等。
                      如下图所示说明了一个由许多Web用户访问的联机银行系统。各Web用户连接到同一数据库以转移现金和支票余额。客户使用不同的浏览器,通过Web方式连接到数据库服务器。
                      
                      联机银行系统应用布署
                      描述系统配置
                      增加更多详细信息以完善示意图。描述各系统组件的配置。应当掌握以下信息:
                      . 连接到系统的用户数;
                      . 应用程序客户端计算机的配置情况(硬件、内存、操作系统、软件、开发工具等);
                      . 使用的数据库和Web服务器的类型(硬件、数据库类型、操作系统、文件服务器等);
                      . 服务器与应用程序客户端之间的通信方式;
                      . 前端客户端与后端服务器之间的中间件配置和应用程序服务器;
                      . 可能影响响应时间的其他网络组件(调制解调器等);
                      . 通信设备的吞吐量以及每个设备可以处理的并发用户数。
                      例如,在如上图所示的示意图中,多个应用程序客户端在访问系统。客户端的配置如下表所示。
                      
                      客户端配置内容
                      分析使用模型
                      定义系统的典型使用方式,并确定需要重点测试的功能。考虑哪些用户使用系统、每种类型用户的数量,以及每个用户的典型任务。此外,还应考虑任何可能影响系统响应时间的后台负载。
                      例如,假设每天上午有200名员工登录记账系统,并且该办公室网络有固定的后台负载:50名用户执行各种字处理和打印任务。可以创建一个200个虚拟用户登录访问记账数据库的方案,并检测服务器的响应时间。要了解后台负载对响应时间的影响,可以在运行方案的网络中再模拟员工执行字处理和打印活动的负载。
                      任务分布
                      除定义常规用户任务外,还应该查看这些任务的分布情况。例如,假设银行用户使用一个中央数据库为跨越多个州和时区的客户提供服务。250个应用程序客户端分布在两个不同的时区,全都连接到同一个Web服务器中。其中150个在芝加哥,另外100个在底特律。每个客户端从上午9点开始工作,但由于处于不同的时区,因此在任何特定时间内都不会有超过150个的用户同时登录。可以分析任务分布,以确定数据库活动峰值期的发生时间,以及负载峰值期间的典型活动。
               定义测试目标
               开始测试之前,应精确地定义想要实现的目标。
                      以可度量的指标制定目标
                      确定了负载测试的一般性目标后,应该以可度量指标制定更具针对性的目标。为了提供评估基准,应精确地确定、区分可接受和不可接受测试结果的标准。
                      例如:
                      . 一般性目标产品评估:选择Web服务器的硬件。
                      . 明确目标产品评估:在一台HP服务器和一台NEC服务器上运行同一个包含300个虚拟用户的组。当300个用户同时浏览Web应用程序页面时,确定哪一种硬件提供更短的响应时间。
                      . 测试目标
                      ①度量最终用户的响应时间,完成一个业务流程需要多长时间;
                      ②定义最优的硬件配置,哪一种硬件配置可以提供最佳性能;
                      ③检查可靠性,系统无错误或无故障运行的时间长度或难度;
                      ④查看硬件或软件升级对性能或可靠性有何影响;
                      ⑤评估新产品,应选择哪些服务器硬件或软件;
                      ⑥度量系统容量,在没有显著性能下降的前提下,系统能够处理多大的负载;
                      ⑦确定瓶颈,哪些因素会延长响应时间。
                      确定测试的时间
                      负载测试应贯穿于产品的整个生命周期。如下表说明了在产品生命周期的各个阶段有哪些类型的测试与之相关。
                      
                      产品生命周期与测试类型
               计划方案实施
               下一步是确定如何实现测试目标。
                      定义性能度量的范围
                      可以度量应用程序中不同点的响应时间。根据测试目标确定在哪里运行Vuser(虚拟用户)以及运行哪些Vuser。
                      . 度量端到端的响应时间。
                      可以在前端运行GUI Vuser(图形用户界面用户)或RTE Vuser(终端用户)来度量典型用户的响应时间。GUI Vuser可以将输入提交给客户端应用程序并从该应用程序接收输出,以模拟实际用户;RTE Vuser则向基于字符的应用程序提交输入,并从该应用程序接收输出,以模拟实际用户。
                      可以在前端运行GUI或RTE Vuser来度量跨越整个网络(包括终端仿真器或GUI前端、网络和服务器)的响应时间。如下图所示为端到端的响应时间。
                      
                      端到端的响应时间
                      . 度量网络和服务器响应时间。
                      可以通过在客户机运行Vuser(非GUI或RTE Vuser)来度量网络和服务器的响应时间(不包括GUI前端的响应时间)。Vuser模拟客户端对服务器的进程调用,但不包括用户界面部分。在客户机运行大量Vuser时,可以度量负载对网络和服务器响应时间的影响。如下图所示为网络和服务器的响应时间。
                      
                      网络和服务器的响应时间
                      . 度量GUI响应时间。
                      可以通过减去前两个度量值,来确定客户端应用程序界面对响应时间的影响。GUI响应时间=端到端响应时间-网络和服务器响应时间。如下图所示为GUI响应时间。
                      
                      GUI响应时间
                      . 度量服务器响应时间。
                      可以度量服务器响应请求(不跨越整个网络)所花费的时间。通过在与服务器直接相连的计算机上运行Vuser,可以度量服务器性能。如下图所示为服务器响应时间。
                      
                      服务器响应时间
                      . 度量中间件到服务器的响应时间。
                      如果可以访问中间件及其API,便可以度量服务器到中间件的响应时间。可以使用中间件API创建Vuser,来度量中间件到服务器的性能。如下图所示为中间件到服务器响应时间。
                      定义Vuser活动
                      根据对Vuser类型的分析以及它们的典型任务和测试目标来创建Vuser脚本。由于Vuser模拟典型最终用户的操作,因此Vuser脚本应包括典型的最终用户任务。例如,要模拟联机银行客户端,应该创建一个执行典型银行任务的Vuser脚本。需要浏览经常访问的页面,以转移现金或支票余额。
                      
                      中间件到服务器响应时间
                      根据测试目标确定要衡量的任务,并定义这些任务的事务。这些事务度量服务器响应Vuser提交的任务所花费的时间(端到端时间)。例如,要查看提供账户余额查询的银行Web服务器的响应时间,则应在Vuser脚本中为该任务定义一个事务。
                      此外,可以通过在脚本中使用集合点来模拟峰值期活动。集合点指示多个Vuser在同一时刻执行任务。例如,可以定义一个集合点,以模拟70个用户同时更新账户信息的情况。
                      选择Vuser
                      确定用于测试的硬件配置之前,应该先确定需要的Vuser的数量和类型。要确定运行多少个Vuser和哪些类型的Vuser,请综合考虑测试目标来查看典型的使用模型。以下是一些一般性规则:
                      . 使用一个或几个GUI用户来模拟每一种类型的典型用户连接;
                      . 使用RTE Vuser来模拟终端用户;
                      . 运行多个非GUI或非RTE Vuser来生成每个用户类型的其余负载。
                      例如,假设有五种类型的用户,每种用户执行一个不同的业务流程,如下表所示。
                      
                      Vuser的数量和类型
                      选择测试硬件和软件
                      硬件和软件应该具有强大的性能和足够快的运行速度,以模拟所需数量的虚拟用户。
                      在确定计算机的数量和正确的配置时,请考虑以下事项。
                      . 建议在一台单独的计算机上运行测试工具主控台。
                      . 在一台Windows计算机只能运行一个GUI Vuser;而在一台UNIX计算机上则可以运行几个GUI Vuser。
                      . GUI Vuser测试计算机的配置应该尽量与实际用户的计算机配置相同。
                      关于每个测试组件的硬件要求,请参考下表一和下表二。要获得最佳性能,应满足表中所列要求。
                      
                      测试机硬件与软件要求(Windows配置要求)
                      注意:对于一个要运行许多事务的长方案,结果文件需要几个MB的磁盘空间。负载生成器计算机还需要几个MB的磁盘空间来存储临时文件(如果没有NFS)。有关运行时文件存储的详细信息,请参阅第10章“配置方案”。
                      有关最新的安装要求,请访问
                      http://www.mercuryinteractive.com/products/loadrunner/technical/
                      
                      测试机硬件与软件要求(UNIX配置要求)
                      注意:对于一个要运行许多事务的长方案,结果文件需要几个MB的磁盘空间。负载生成器计算机还需要几个MB的磁盘空间来存储临时文件(如果没有NFS)。有关运行时文件存储的详细信息,请参阅第10章“配置方案”。
               检查测试目标
               测试计划应该基于明确定义的测试目标。下面概述了常规的测试目标。
               ①度量最终用户响应时间。
               ②定义最优的硬件配置。
               ③检查可靠性。
               ④查看硬件或软件升级。
               ⑤评估新产品。
               ⑥确定瓶颈。
               ⑦度量系统容量。
                      度量最终用户响应时间
                      查看用户执行业务流程以及从服务器得到响应所花费的时间。例如,假设想要检测:系统在正常的负载情况下运行时,最终用户能否在20秒内得到所有请求的响应。如下图显示了一个银行应用程序的负载和响应时间度量之间的关系。
                      
                      负载和响应时间度量关系
                      定义最优的硬件配置
                      检测各项系统配置(内存、CPU速度、缓存、适配器、调制解调器)对性能的影响。了解系统体系结构并测试了应用程序响应时间后,可以度量不同系统配置下的应用程序响应时间,从而确定哪一种设置能够提供理想的性能级别。
                      例如,可以设置三种不同的服务器配置,并针对各个配置运行相同的测试,以确定性能上的差异。
                      . 配置1:200MHz、64MB RAM。
                      . 配置2:200MHz、128MB RAM。
                      . 配置3:266MHz、128MB RAM。
                      检查可靠性
                      确定系统在连续的高工作负载下的稳定性级别。可以创建系统负载:强制系统在短时间内处理大量任务,来模拟系统在数周或数月的时间内通常会遇到的活动类型。
                      查看硬件或软件升级
                      执行回归测试,以便对新旧版本的硬件或软件进行比较。可以查看软件或硬件升级对响应时间(基准)和可靠性的影响。应用程序回归测试需要查看新版本的效率和可靠性是否与旧版本相同。
                      评估新产品
                      可以运行测试,以评估单个产品和子系统在产品生命周期中的计划阶段和设计阶段的表现。例如,可以根据评估测试来选择服务器的硬件或数据库套件。
                      确定瓶颈
                      可以运行测试以确定系统的瓶颈,并确定哪些因素导致性能下降,例如,文件锁定、资源争用和网络过载。使用负载压力测试工具,以及网络和计算机监视工具以生成负载,并度量系统中不同点的性能。如下图所示为系统不同点的性能。
                      
                      系统不同点的性能
                      度量系统容量
                      度量系统容量,并确定系统在不降低性能的前提下能提供多少额外容量。要查看容量,可以查看现有系统中性能与负载间的关系,并确定出现响应时间显著延长的位置。该处通常称为响应时间曲线的“拐点”。确定了当前容量后,便可以确定是否需要增加资源以支持额外的用户。如下图所示为响应时间与负载关系。
                      
                      响应时间与负载关系
 
       单元测试
        单元测试是通过对每个最小的软件模块进行测试,对源代码的每一个程序单元实行测试,检查各个程序模块是否正确地实现了规定的功能,确保其能正常工作。
        单元测试由开发人员执行,一般由模块单元开发者设计测试用例并修改缺陷。单元测试具有如下三种行为:
        (1)单元测试是一种验证行为。验证程序中的每项功能的正确性为代码的重构提供了保障。
        (2)单元测试是一种设计行为。软件设计阶段考虑如何实现软件的功能、性能和用户界面等,而不考虑实现的代码。单元测试关注于软件的具体功能实现是否符合需求设计,而不仅仅定位于代码的实现。
        (3)单元测试是一种文档的行为。单元测试是函数或类等软件模块如何设计、实现和使用的最佳文档。
               单元测试的特性
               单元测试具有如下特性:
               (1)单入测试是覆盖代码区间的最小单元。
               (2)单元测试支持组包测试。
               (3)单元测试的执行率为100%。
               (4)单元测试确定变动后的代码对原代码的功能未做修改。
               (5)单元测试提升了软件系统整体的可信赖度。
               (6)单元测试包含对可能出现问题的代码进行排查。
               (7)单元测试支持开发人员先测试后编码的行为。
               (8)单元测试支持变化,任何变化导致的失败情况均会被反映出来。
               (9)单元测试准确地反映了代码设计,便于后期维护。
               单元测试的认识误区
               (1)单元测试是全部规范。单元测试本质上是种特定的测试方式,是系统的实现方法规范的补充,而不是整个规范。
               (2)单元测试浪费时间。单元测试不会浪费太多的时间,反而会节省项目时间。
               (3)单元测试只需使用测试工具就可完成。单元测试工具生成的测试用例往往无法对被测试的程序进行有效覆盖,必须进行人工检查。
               (4)单元测试是针对代码进行的测试。单元测试依据详细设计报告设计测试用例,不仅仅只是对代码的测试。
               单元测试的原则
               单元测试需要遵守如下原则。
               (1)单元测试遵循《软件单元测试计划》和《软件单元测试说明》文档,根据详细设计编写单元测试用例,而不能根据代码编写单元测试用例。
               (2)单元测试执行前先检查单元测试入口条件是否全部满足。
               (3)单元测试必须满足一定的覆盖率,重要的接口函数必须做单元测试。
               (4)单元测试在修改代码后修改测试用例,将全部单元测试用例进行回归测试。
               (5)单元测试必须满足预定的出口条件才能结束。
               (6)在单元测试完成后,记录《单元测试报告》,分析问题的种类和原因。
               (7)单元测试始终在配置管理控制下进行,软件问题的修改必须符合变动规程的要求。
               (8)单元测试文档、测试用例、测试记录和被测程序等齐全,符合规范。
               单元测试的主要任务
               单元测试主要针对程序模块进行测试,主要有5个任务:模块接口、局部数据结构、执行路径、出错处理和边界条件。
                      模块接口测试
                      通过对被测模块的数据流进行测试,检查进出模块的数据是否正确。因此,必须对模块接口,包括参数表、调用子模块的参数、全局变量、文件I/O操作进行测试。具体涉及以下内容:
                      .模块接受输入的实际参数个数与模块的形式参数个数是否一致。
                      .输入的实际参数与模块的形式参数的类型是否匹配。
                      .输入的实际参数与模块的形式参数所使用的单位是否一致。
                      .调用其他模块时,所传送的实际参数个数与被调用模块的形式参数的个数是否相同。
                      .调用其他模块时,所传送的实际参数与被调用模块的形式参数的类型是否匹配。
                      .调用其他模块时,所传送的实际参数与被调用模块的形式参数的单位是否一致。
                      .调用内部函数时,参数的个数、属性和次序是否正确。
                      .在模块有多个入口的情况下,是否引用有与当前入口无关的参数。
                      .是否修改了只读型参数。
                      .全局变量是否在所有引用它们的模块中都有相同的定义。
                      局部数据结构测试
                      测试用例检查局部数据结构的完整性,如数据类型说明、初始化、默认值等方面的问题,并测试全局数据对模块的影响。
                      在模块的工作过程中,必须测试模块内部的数据能否保持完整性,包括内部数据的内容、形式及相互关系不发生错误。
                      局部数据结构应注意以下几类错误:不正确或不一致的类型说明;错误的初始化或默认值;错误的变量名,如拼写错误或书写错误;下溢、上溢或者地址错误。
                      执行路径测试
                      测试用例对模块中重要的执行路径进行测试,其中对基本执行路径和循环进行测试往往可以发现大量的路径错误。测试用例必须能够发现由于计算错误、不正确的判定或不正常的控制流而产生的错误。
                      常见的错误有误解或不正确的算术优先级;混合模式的运算;错误的初始化;精确度不够精确;表达式的不正确符号表示。
                      针对判定和条件覆盖,测试用例能够发现的错误有:不同数据类型的比较;不正确的逻辑操作或优先级;应当相等的地方由于精确度的错误而不能相等;不正确的判定或不正确的变量;不正确的或不存在的循环终止;当遇到分支循环时不能退出;不适当地修改循环变量。
                      出错处理测试
                      测试出错处理的重点是模块在工作中发生了错误,其中的出错处理设施是否有效。
                      检验程序中的出错处理可能面对的情况有以下几种:
                      .对运行发生的错误描述难以理解。
                      .所报告的错误与实际遇到的错误不一致。
                      .出错后,在错误处理之前就引起系统的干预。
                      .例外条件的处理不正确。
                      .提供的错误信息不足,以致无法找到错误的原因。
                      边界条件测试
                      边界条件测试是单元测试的最后一步,必须采用边界值分析方法来设计测试用例。在为限制数据处理而设置的边界处,测试模块是否能够正常工作。
                      一些与边界有关的数据类型,如数值、字符、位置、数量、尺寸等,以及边界的第一个、最后一个、最大值、最小值、最长、最短、最高和最低等特征。
                      在边界条件测试中,应设计测试用例检查一下情况。
                      .在n次循环的第0次、第1次、第n次是否有错误。
                      .运算或判断中取最大值、最小值时是否有错误。
                      .数据流、控制流中刚好等于、大于、小于确定的比较值是否出现错误。
               单元测试的执行过程
               通常,单元测试在编码阶段进行,在源程序代码编制完成,经过评审和验证,确认没有语法错误之后,开始设计单元测试用例。
               由于模块并不是一个独立的程序,在考虑测试模块时,同时要考虑与其有关的外界联系,因此使用一些辅助模块去模拟与被测模块相关的其他模块。辅助模块分为以下两种:
               (1)驱动(Drive)模块。用于模拟被测试模块的上一级模块,相当于被测模块的主程序,用于接收测试数据,并把这些数据传送给被测模块,启动被测模块,最后输出实测结果。
               (2)桩(Stub)模块。用于模拟被测模块工作过程中所调用的模块。桩模块一般只进行很少的数据处理,不需要把子模块的所有功能都带进来,但不允许什么事情也不做。
               单元测试停止的条件
               单元测试停止的条件如下。
               (1)单元测试用例设计已经通过评审。
               (2)按照单元测试计划完成了所有规定单元的测试。
               (3)达到了测试计划中关于单元测试所规定的覆盖率的要求。
               (4)被测试的单元每千行代码必须发现至少3个错误。
               (5)软件单元功能与设计相一致。
               (6)在单元测试中发现的错误已经得到修改,各级缺陷修复率达到标准。
 
       黑盒测试
        黑盒测试又称为数据驱动测试、基于规格的测试、输入输出测试或者功能测试。黑盒测试基于产品功能规格说明书,从用户角度针对产品特定的功能和特性进行验证活动,确认每个功能是否得到完整实现,用户能否正常使用这些功能。
        黑盒测试在不知道系统或组件内部结构的情况下进行,不考虑内部逻辑结构,着眼于程序外部结构,在软件接口处进行测试。黑盒测试主要具有如下功能:
        (1)检查程序功能能否按需求规格说明书的规定正常使用,测试各个功能是否有遗漏,检测是否满足性能等特性要求。
        (2)检测人机交互是否错误,检测数据结构或外部数据库访问是否错误,程序是否能适当地接收输入数据而产生正确的输出结果,并保持外部信息(如数据库或文件等)的完整性。
        (3)检测程序初始化和终止方面的错误。
        黑盒测试方法主要有等价类划分、边界值分析、决策表、因果图、错误推测和功能图法等测试方法,本节主要介绍等价类划分、边界值分析、决策表和元素分析法与错误推测法。
               等价类划分
               等价类是指某个输入域的子集合。在该子集合中,测试某等价类的代表值就等于对这一类其他值的测试,对于揭露程序的错误是等效的。因此,将输入的全部数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据取得较好的测试结果。
               等价类划分有两种情况,即有效等价类和无效等价类。
               (1)有效等价类。对于程序的规格说明来说,它是由合理的、有意义的输入数据构成的集合,利用它可检验程序是否实现了规格说明中所规定的功能和性能。
               (2)无效等价类。与有效等价类相反,它是由对程序的规格说明无意义、不合理的输入数据构成的集合。
               测试用例的设计不仅接收合理的数据,也能经受意外的不合理数据的考验,这样才能确保软件具有较高的可靠性。
               分析可能的输入情况,按照如下几条规则对等价类进行划分。
               (1)在输入条件规定了取值范围或值的个数的情况下,确立一个有效等价类和两个无效等价类。
               例如,若输入条件规定了x的取值为1~100的整数,则等价类划分有效等价类1≤x≤100,两个无效等价类分别为x<1或x>100。
               (2)按照数值集合划分。在输入条件规定了输入值的集合或者规定了“必须如何”的条件下,确立一个有效等价类和一个无效等价类。
               例如,输入条件规定了x的取值为偶数,则有效等价类为x的值为偶数,无效等价类为x的值不为偶数的整数。
               (3)输入条件是一个布尔量的情况,确定一个有效等价类和一个无效等价类。
               (4)规定输入数据取一组值(假定n个),并且程序要在对每一个输入值分别处理的情况下,确立n个有效等价类和一个无效等价类。
               例如,分房方案中对教授、副教授、讲师、助教分别计分,则有效类为4个;无效类为1个。
               (5)按照限制条件或规则划分。在规定输入数据必须遵守的规则的情况下,确立一个有效等价类(符合规则)和若干个无效等价类(从不同角度违反规则)。
               例如,C程序设计语言的语法规定.每个语句应以“;”结束,则其有效类有1个,而无效类有若干个(如以“,”结束、以“:”结束、以空格结束等)。
               (6)在确知已划分的等价类中各元素在程序处理方式不同的情况下,再将该等价类进一步划分为更小的等价类。
               等价类划分后,形成等价类表,见下表。
               
               等价类表样式
               根据等价类表,确定测试用例。首先,为每一个等价类规定唯一编号;其次,设计新的测试用例,使其尽可能多地覆盖尚未被覆盖的有效等价类,重复这一步,直到所有的有效等价类都被覆盖为止;最后,设计新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类,重复这一步,直到所有的无效等价类都被覆盖为止(通常,程序在执行一个错误后不继续检测其他错误,故每次只测一个无效类)。
               边界值分析
               软件测试实践中,大量的错误往往发生在输入或输出范围的边界上,而不是发生在输入输出范围的内部。例如,数组下标、循环控制变量等边界附近往往出现大量错误。因此,作为等价类划分方法的补充,边界值分析方法不是选择等价类的任意元素,而主要是针对各种边界情况设计测试用例。
               常见的边界值一般具有如下情况:
               (1)对16位的整数而言,32767和-32768是边界。
               (2)屏幕上的光标在最左上、最右下位置是边界。
               (3)报表的第一行和最后一行是边界。
               (4)数组元素的第一个和最后一个是边界。
               (5)循环的第0次、第1次和倒数第2次、最后一次是边界。
               边界值分析法应着重测试的情况,一般选取等价类划分的输入和输出的边界正好等于或刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据。
               边界值分析方法具有如下原则。
               (1)如果输入条件规定了值的范围,则应选取刚达到范围的边界值,以及刚刚超越边界的值作为测试的输入数据。
               (2)如果输入条件规定了值的个数,则用略低于最小值、最小值、略高于最小值、正常值、略低于最大值、最大值和略高于最大值作为测试数据。
               (3)如果程序规格说明给出的输入域或输出域是有序集合,则应选取集合的第一个元素和最后一个元素作为测试用例。
               决策表
               决策表又称为判定表,用于分析多种逻辑条件下执行不同操作的技术。在程序设计发展的初期,决策表是程序编写的辅助工具。决策表可以把复杂的逻辑关系和多种条件的组合情况表达明确,与高级程序设计语言中的if-else、switch-case等分支结构语句类似,它将条件判断与执行的动作联系起来。但与程序语言中的控制语句不同的是,决策表能将多个独立的条件和多个动作联系清晰地表示出来。
               决策表的组成如下。
               (1)条件桩:列出了问题的所有条件。通常认为,列出的条件次序无关紧要。
               (2)动作桩:列出了问题规定可能采取的操作,这些操作的排列顺序没有约束。
               (3)条件项:列出了针对条件桩的取值在所有可能情况下的真假值。
               (4)动作项:列出了在条件项的各种取值的有机关联情况下应该采取的动作。
               规则即任何条件组合的特定取值及其相应要执行的操作。在决策表中,贯穿条件项和动作项的列就是规则。显然,决策表中列出多少个条件取值,也就有多少个规则,条件项和动作项就有多少列。
               所有条件都是逻辑结果的决策表称为有限条件决策表。如果条件有多个值,则对应的决策表就叫做扩展条目决策表。决策表用来设计测试用例,条件解释为输入,动作解释为输出。
               决策表适合以下特征的应用程序:
               (1)if-then-else分支逻辑输出。
               (2)输入变量之间存在逻辑关系。
               (3)涉及输入变量子集的计算。
               (4)输入和输出之间存在因果关系。
               (5)很高的圈复杂度。
               构造决策表的步骤:
               ①确定规则的个数。
               有n个条件的决策表有2n个规则(每个条件取真、假值)。
               ②列出所有的条件桩和动作桩。
               ③填入条件项。
               ④填入动作项,得到初始决策表。
               ⑤简化决策表,合并相似规则。
               元素分析法与错误推测法
               元素分析法主要是对测试对象中的各个元素的属性、范围、特点等进行分析,通过对元素的分析,寻找出测试空间和缺陷空间,设计测试用例的方法。
               元素分析法的基本过程如下:
               (1)找出测试对象中的各个元素。
               (2)分析每个元素的特点和属性,确定测试空间与缺陷空间。
               (3)分析元素的组合情况。
               错误推测法是基于经验和直觉的推测,列举出程序中所有可能错误和容易发生错误的特殊情况,有针对性地设计测试用例。
               经验表明,一段程序中已发现的错误数目和尚未发现的错误数目成正比。程序中容易出错的情况如下所示:当输入数据为零时,或者输入或输出的数目允许变化(例如,被检索的或生成的表的项数),或者输入或输出的数目为0和1的情况(例如,表为空或只有一项)等,都较容易发生错误。又如,在单元测试时曾列出许多在模块中常见的错误,以前产品测试中曾经发现的错误等,这些就是经验的总结。
               错误推测法是根据测试人员的经验来确定测试的范围和程度,主要采用如下技术:
               (1)有关软件的设计方法和实现技术。
               (2)有关前期测试阶段结果的知识。
               (3)根据测试类似或相关系统的经验,了解在以前的这些系统中曾在哪些地方出现过缺陷。
               (4)典型的产生错误的情况,如被零除错误等。
               (5)通用的测试经验规则。
 
       集成测试
        集成测试也叫做组装测试或联合测试。通常,在单元测试的基础上,需要将所有模块按照概要设计说明书和详细设计说明书的要求进行组装。
        . 组装时需要考虑的问题。
        ①在把各个模块连接起来的时候,穿越模块接口的数据是否会丢失;
        ②一个模块的功能是否会对另一个模块的功能产生不利的影响;
        ③各个子功能组合起来,能否达到预期要求的父功能;
        ④全局数据结构是否有问题;
        ⑤单个模块的误差累积起来,是否会放大,以至达到不能接受的程度。
        因此,在单元测试的同时可进行集成测试,发现并排除在模块连接中可能出现的问题,最终构成要求的软件系统。
        子系统的集成测试称为部件测试,它所做的工作是要找出组装后的子系统与系统需求规格说明之间的不一致。
        选择什么方式把模块组装起来形成一个可运行的系统,直接影响到模块测试用例的形式、所用测试工具的类型、模块编号的次序和测试的次序以及生成测试用例的费用和调试的费用。
        . 模块组装成为系统的方式。
        模块组装成为系统的方式有两种:一次性组装方式和增殖式组装方式。
        ①一次性组装方式(big bang)。
        它是一种非增殖式组装方式,也叫做整体拼装。使用这种方式,首先对每个模块分别进行模块测试,再把所有模块组装在一起进行测试,最终得到要求的软件系统。例如,有一个模块系统结构,如下图(a)所示。其单元测试和组装顺序如下图(b)所示。
        
        一次性组装方式
        在如上图(b)中,模块d1,d2,d3,d4,d5是对各个模块做单元测试时建立的驱动模块,s1,s2,s3,s4,s5是为单元测试而建立的桩模块。这种一次性组装方式试图在辅助模块的协助下,在分别完成模块单元测试的基础上,将所测模块连接起来进行测试。但是由于程序中不可避免地存在涉及模块间接口、全局数据结构等方面的问题,所以一次试运行成功的可能性并不很大。其结果是,发现有错误,却茫然找不到原因。查错和改错都会遇到困难。
        ②增殖式组装方式。
        这种组装方式又称渐增式组装,是首先对一个个模块进行模块测试,然后将这些模块逐步组装成较大的系统,在组装的过程中边连接边测试,以发现连接过程中产生的问题。最后通过增殖逐步组装成为要求的软件系统。
        . 自顶向下的增殖方式。这种组装方式是将模块按系统程序结构,沿控制层次自顶向下进行组装。其步骤如下:首先以主模块作为所测模块兼驱动模块,所有直属于主模块的下属模块全部用桩模块代替,对主模块进行测试。再采用深度优先(如下图所示为自顶向下的增殖方式)或广度优先的策略,用实际模块替换相应的桩模块,再用桩模块代替它们的直接下属模块,与已测试的模块或子系统组装成新的子系统。然后,进行回归测试(即重新执行以前做过的全部测试或部分测试),排除组装过程中引入新的错误的可能。最后,判断是否所有的模块都已组装到系统中。是,则结束测试;否则,转到B去执行。
        
        自顶向下的增殖方式
        自顶向下的增殖方式在测试过程中较早地验证了主要的控制和判断点。在一个功能划分合理的程序模块结构中,判断常常出现在较高的层次里,因而,能够较早地遇到这种问题。如果主要控制有问题,尽早发现它能够减少以后的返工,这是十分必要的。如果选用按深度方向组装的方式,可以首先实现和验证一个完整的软件功能,可先对逻辑输入的分支进行组装和测试,检查和克服潜藏的错误和缺陷,验证其功能的正确性,就为其后对主要加工分支的组装和测试提供了保证。此外,功能可行性较早地得到证实,还能够增强开发者和用户成功的信心。
        . 自底向上的增殖方式。这种组装方式是从程序模块结构的最底层模块开始组装和测试。因为模块是自底向上进行组装的,对于一个给定层次的模块,它的子模块(包括子模块的所有下属模块)已经组装并测试完成,所以不再需要桩模块。在模块的测试过程中需要从子模块得到的信息可以通过直接运行子模块得到。自底向上增殖的步骤如下:首先由驱动模块控制最底层模块的并行测试;也可以把最底层模块组合成实现某一特定软件功能的簇,由驱动模块控制它进行测试。再用实际模块代替驱动模块,与它已测试的直属子模块组装成为子系统。然后,为子系统配备驱动模块,进行新的测试。最后判断是否已组装到达主模块。是,则结束测试;否则,执行B。
        以如下图一(a)所示的一次性组装方式系统结构为例,可以用如下图二说明自底向上组装和测试的顺序。
        
        一次性组装方式
        
        自底向上的增殖方式
        . 混合增殖式测试。自顶向下增殖的方式和自底向上增殖的方式各有优缺点。一般来讲,一种方式的优点是另一种方式的缺点。
        自顶向下增殖方式的缺点是需要建立桩模块。要使桩模块能够模拟实际子模块的功能十分困难,因为,桩模块在接收了所测模块发送的信息后,需要按照它所代替的实际子模块功能返回应该回送的信息,这必将增加建立桩模块的复杂度,而且导致增加一些附加的测试。同时,涉及复杂算法和真正输入/输出的模块一般在底层,它们是最容易出问题的模块,到组装和测试的后期才遇到这些模块,一旦发现问题,就会导致过多的回归测试。而自顶向下增殖方式的优点是能够较早地发现主要控制方面的问题。
        自底向上增殖方式的缺点是“程序一直未能作为一个实体存在,直到最后一个模块加上去后才形成一个实体”。就是说,在自底向上组装和测试的过程中,对主要的控制直到最后才接触到。这种方式的优点是不需要桩模块,而建立驱动模块一般比建立桩模块容易,同时由于涉及到复杂算法和真正输入/输出的模块最先得到组装和测试,可以把最容易出问题的部分在早期解决。此外自底向上增殖的方式可以实施多个模块的并行测试,提高测试效率。因此,通常是把以上两种方式结合起来进行组装和测试。
        在进行集成测试时,测试者应当确定关键模块,对这些关键模块及早进行测试。关键模块至少应具有以下几种特征之一:
        . 满足某些软件需求;
        . 在程序的模块结构中位于较高的层次(高层控制模块);
        . 较复杂、较易发生错误;
        . 有明确定义的性能要求。
        在做回归测试时,也应该集中测试关键模块的功能。
        . 集成测试的组织和实施。
        集成测试是一种正规测试过程,必须精心计划,并与单元测试的完成时间协调起来。在制定测试计划时,应考虑如下因素:
        ①采用何种系统组装方法来进行集成测试。
        ②集成测试过程中连接各个模块的顺序。
        ③模块代码编制和测试进度是否与集成测试的顺序一致。
        ④测试过程中是否需要专门的硬件设备。
        解决了上述问题之后,就可以列出各个模块的编制、测试计划表,标明每个模块单元测试完成的日期、首次集成测试的日期、集成测试全部完成的日期、以及需要的测试用例和所期望的测试结果。
        在缺少软件测试所需要的硬件设备时,应检查该硬件的交付日期是否与集成测试计划一致。例如,若测试需要数字化仪和绘图仪,则相应的测试应安排在这些设备能够投入使用之时,并要为硬件的安装和交付使用保留一段时间,以留下时间余量。此外,在测试计划中需要考虑测试所需软件(驱动模块、桩模块、测试用例生成程序等)的准备情况。
        . 集成测试完成的标志。
        集成测试完成的标志主要有以下几项。
        ①成功地执行了测试计划中规定的所有集成测试。
        ②修正了所发现的错误。
        ③测试结果通过了专门小组的评审。
        集成测试应由专门的测试小组来进行,测试小组由有经验的系统设计人员和程序员组成。整个测试活动要在评审人员出席的情况下进行。
        在完成预定的集成测试工作之后,测试小组应负责对测试结果进行整理、分析,形成测试报告。测试报告中要记录实际的测试结果在测试中发现的问题、解决这些问题的方法以及解决之后再次测试的结果。此外还应提出目前不能解决、还需要管理人员和开发人员注意的一些问题,提供测试评审和最终决策,以提出处理意见。
        集成测试需要提交的文档有集成测试计划、集成测试规格说明和集成测试分析报告。
   题号导航      2016年下半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第7题    在手机中做本题