免费智能真题库 > 历年试卷 > 网络规划设计师 > 2018年下半年 网络规划设计师 上午试卷 综合知识
  第4题      
  知识点:   系统调整   响应时间   CPU   进程   可用性   内存   日志文件   数据库   数据库系统   线程
  关键词:   CPU   进程   可用性   内存   数据库系统   线程   响应时间   数据   数据库        章/节:   计算机网络基础知识       

 
为了优化系统的性能,有时需要对系统进行调整。对于不同的系统,其调整参数也不尽相同。例如,对于数据库系统,主要包括CPU/内存使用状况、(4)、进程/线程使用状态、日志文件大小等。对于应用系统,主要包括应用系统的可用性响应时间、(5)、特定应用资源占用等。
 
 
  A.  数据丢包率
 
  B.  端口吞吐量
 
  C.  数据处理速率
 
  D.  查询语句性能
 
 
 

 
  第37题    2018年下半年  
   40%
某高校欲重新构建高校选课系统,配备多台服务器部署选课系统,以应对选课高峰期的大规模并发访问。根据需求,公司给出如下2套方案..
  第5题    2018年下半年  
   41%
为了优化系统的性能,有时需要对系统进行调整。对于不同的系统,其调整参数也不尽相同。例如,对于数据库系统,主要包括CPU/内存..
  第36题    2018年下半年  
   35%
某高校欲重新构建高校选课系统,配备多台服务器部署选课系统,以应对选课高峰期的大规模并发访问。根据需求,公司给出如下2套方案..
   知识点讲解    
   · 系统调整    · 响应时间    · CPU    · 进程    · 可用性    · 内存    · 日志文件    · 数据库    · 数据库系统    · 线程
 
       系统调整
        为了优化系统的性能,有时需要对系统进行调整,这种调整也称为性能调整,它是与性能管理相关的主要活动。当系统性能降到最基本的水平时,性能调整由查找和消除瓶颈组成,所谓瓶颈是指系统中的某个硬件或软件接近其容量限制时发生和显示出来的情况。
        对于不同的系统,其调整参数也不尽相同。例如,对于数据库系统,主要包括CPU/内存使用状况、优化数据库设计、优化SQL语句以及进程/线程状态、硬盘剩余空间、日志文件大小等;对于应用系统,主要包括应用系统的可用性、响应时间、并发用户数以及特定应用的系统资源占用等。
               准备工作
               在开始性能调整循环之前,必须做一些准备工作,为正在进行的性能调整活动建立框架。
               (1)识别约束。约束(如可维护性)在寻求更高的性能方面是不可改变的因素,因此,在寻求提高性能的方法时,必须集中在不受约束的因素上。
               (2)指定负载。确定系统的客户端需要哪些服务,以及对这些服务的需求程度。用于指定负载的最常用度量标准是客户端数目、客户端思考时间以及负载分布状况。其中客户端思考时间是指客户端接收到答复到提交新请求之间的时间间隔,负载分布状况包括稳定或波动负载、平均负载和峰值负载。
               (3)设置性能目标。性能目标必须明确,包括识别用于调整的度量标准及其对应的基准值。总的系统吞吐量和响应时间是用于测量性能的两个常用度量标准。识别性能度量标准后,必须为每个度量标准建立可计量的、合理的基准值。
               性能调整
               建立了性能调整的边界、约束和目标后,就可以开始进入调整循环了。性能调整是一项循环进行的工作,包括收集、分析、配置和测试4个反复的步骤。
               (1)收集。收集阶段是任何性能调整操作的起点。在此阶段,只使用为系统特定部分选择的性能计数器集合来收集数据。这些计数器可用于网络、服务器或后端数据库。不论调整的是系统的哪一部分,都需要根据基准测量来比较性能的改变。需要建立系统空闲以及系统执行特定任务时的系统行为模式。因此,可以使用第一次数据收集建立系统行为值的基准集。基准建立在系统的行为令人满意时应该看到的典型计数器值。
               (2)分析。收集了调整选定系统部分所需的性能数据后,需要对这些数据进行分析以确定瓶颈。性能数字仅具有指示性,它并不一定就可以确定实际的瓶颈在哪里,因为一个性能问题可能由多个原因所致。
               (3)配置。收集了数据并完成结果分析后,可以确定系统的哪部分最适合进行配置更改,然后实现此更改。实现更改的最重要规则是一次仅实现一个配置更改。看起来与单个组件相关的问题可能是由涉及多个组件的瓶颈导致的,因此分别处理每个问题很重要。如果同时进行多个更改,将不可能准确地评定每次更改的影响。
               (4)测试。实现了配置更改后,必须完成适当级别的测试,确定更改对调整的系统所产生的影响。如果性能提高到预期的水平(达到了预期的目标),这时便可以退出;否则,就必须重新进行调整循环。
 
       响应时间
        系统响应时间是指用户发出完整请求到系统完成任务给出响应的时间间隔。处于系统中不同的角色的人,对响应时间的关注点是不一样的。从系统管理员的角度来看,系统响应时间指的是服务器收到请求的时刻开始计时,到服务器完成执行请求,并将请求的信息返回给用户这一段时间的间隔。这个“服务器”包含的范围是给用户提供服务的接口服务器,中间的一些业务处理的服务器和排在最后面的数据库服务器。这里并不包含请求和响应在网络上的通信时间。
        从用户的角度来看,响应时间是用户发出请求开始计时,(如按下“确认”或Enter键的时刻),到用户的请求的相应结果展现在用户机器的屏幕的时候的这一段时间的间隔。这个时间称为“客户端的响应时间”,它等于客户端的请求队列加上服务器的响应时间和网络的响应时间的总和。可以看出,从用户角色感受的“响应时间”是所有响应时间中最长的,很多影响因素不在应用系统的范围内,如数据包在网络上的传输时间、域名解析时间等。
        响应时间超出预期太多的应用系统会导致用户的反感,因为系统在让他们等待,这样会降低他们的工作效率,延长他们的工作时间。位于互联网上的Web网站也存在同样的问题,有调查表明,如果一个Web网页不能在8秒钟内下载到访问的用户端,访问者就会失去耐性,他们有的尝试其他同类型的网站,有的可能访问竞争者的网站,并且可能影响他们圈子里面的人访问这个网站的兴趣和取向。对于一个指望这些访问者变为客户的网站站点而言,响应时间带来的后果等同于销售额的损失。
        系统的响应时间对每个用户来说都是不一样的,以下因素会影响系统的平均响应时间:
        (1)和业务相关,处理不同的业务会有不同的响应时间。
        (2)和业务组合有关,业务之间可能存在依赖关系或其他,也会相互影响。
        (3)和用户的数量有关,大并发量会严重影响应时间。
        有多种方法可以用来测试响应时间,常用的有两种方法,分别是首字节响应时间和末字节响应时间。首字节响应时间是指向服务器发送请求与接收到响应的第一个字节之间的时间,末字节响应时间是指向服务器发送请求与接收到响应的最后一个字节之间的时间。通过测量响应时间,可以知道所有客户端用户完成一笔业务所用的时间以及平均时间、最大时间。
        米勒曾经给出了3个经典的有关响应时间的建议,至今仍有参加价值:
        (1)0.1秒:用户感觉不到任何延迟。
        (2)1秒:用户愿意接受的系统立即响应的时间极限。即当执行一项任务的有效反馈时间在0.1~1秒之内时,用户是愿意接受的。超过此数据值,则意味着用户会感觉到有延迟,但只要不超过10秒,用户还是可以接受的。
        (3)10秒:用户保持注意力执行本次任务的极限,如果超过此数值时仍然得不到有效的反馈,用户会在等待计算机完成当前操作时转向其他的任务。
 
       CPU
        CPU即中央处理器,它是计算机系统的核心部分。刚才所列的系统性能评价指标都是围绕CPU的。当然,这些指标的评价结果是建立在CPU与其他系统部件(如内存)的协同工作的基础上的。单就CPU而言,考察它在系统中的工作性能要关注CPU利用率、队列长度、每秒中断次数,等。
 
       进程
        简单而言,一个进程就是一个正在运行的程序。一般来说,一个进程至少应该包括以下几个方面的内容。
        .相应的程序:进程既然是一个正在运行的程序,当然需要有相应程序的代码和数据。
        .CPU上下文:指程序在运行时,CPU中各种寄存器的当前值,包括:程序计数器,用于记录将要取出的指令的地址;程序状态字,用于记录处理器的运行状态信息;通用寄存器,用于存放数据或地址;段寄存器,用于存放程序中各个段的地址;栈指针寄存器,用于记录栈顶的当前位置。
        .一组系统资源:包括操作系统用来管理进程的数据结构、进程的内存地址空间、进程正在使用的文件等。
        进程有动态性、独立性和并发行三个特性。
        (1)动态性。进程是一个正在运行的程序,而程序的运行状态是在不断地变化的。例如,当一个程序在运行的时候,每执行完一条指令,PC寄存器的值就会增加,指向下一条即将执行的指令。而CPU中用来存放数据和地址的那些通用寄存器,它们的值肯定也不断地变化。另外,堆和栈的内容也在不断地变化,每当发生一次函数调用时,就会在栈中分配一块空间,用来存放此次函数调用的参数和局部变量。而当函数调用结束后,这块栈空间就会被释放掉。
        (2)独立性。一个进程是一个独立的实体,是计算机系统资源的使用单位。每个进程都有自己的运行上下文和内部状态,在它运行的时候独立于其他的进程。
        (3)并发性。从宏观上来看,在系统中同时有多个进程存在,它们相互独立地运行。
        下图表示四个进程A、B、C、D在系统中并发地运行。从中可以看出,虽然从宏观上来说,这四个进程都是在系统中运行,但从微观上来看,在任何一个特定的时刻,只有一个进程在CPU上运行。从时间上来看,开始是进程A在运行,然后是进程B在运行,然后是进程C和进程D。接下来又轮到了进程A去运行。因此,在单CPU的情形下,所谓的并发性,指的是宏观上并发运行,而微观上还是顺序运行,各个进程轮流去使用CPU资源。
        
        四个进程在并发运行
        在具体实现上,以CPU中的程序计数器PC为例,真正物理上的PC寄存器只有一个。当四个进程在轮流执行时,PC取值的运动轨迹是先在进程A内部流动,然后再到进程B的内部流动,再到进程C和D。从进程的独立性角度来说,每个进程都有“自己”独立的PC寄存器,即逻辑上的PC寄存器,它们的取值相互独立、互不影响。所谓的逻辑PC,其实就是一个内存变量。例如,在上图中,当进程A要执行的时候,就把A的逻辑PC的值拷贝到物理PC中,然后开始运行。当轮到B运行的时候,先把物理PC的当前值保存到A的逻辑PC中,然后再把B的逻辑PC的值装入到物理PC中,即可运行。这样就实现了各个进程的轮流运行。
 
       可用性
        可用性(Availability)是指合法许可的用户能够及时获取网络信息或服务的特性。例如,网站能够给用户提供正常的网页访问服务,防止拒绝服务攻击。可用性是常受关注的网络信息系统CIA三性之一,其中A代表可用性(Availability)。对于国家关键信息基础设施而言,可用性至关重要,如电力信息系统、电信信息系统等,要求保持业务连续性运行,尽可能避免中断服务。
 
       内存
        除了CPU,内存也是影响系统性能的最常见的瓶颈之一。看系统内存是否够用的一个重要参考就是分页文件的数目,分页文件是硬盘上的真实文件,当操作系统缺少物理内存时,它就会把内存中的数据挪到分页文件中去,如果单位时间内此类文件使用频繁(每秒个数大于5),那就应该考虑增加内存。具体考察内存的性能的参数包括内存利用率、物理内存和虚拟内存的大小。
 
       日志文件
        事务日志是针对数据库改变所做的记录,它可以记录针对数据库的任何操作,并将记录结果保存在独立的文件中,这种文件就称为日志文件。对于任何一个事务,事务日志都有非常全面的记录,根据这些记录可以将数据文件恢复成事务前的状态。从事务动作开始,事务日志就处于记录状态,事务执行过程中对数据库的任何操作都记录在内,直到用户提交或回滚后才结束记录。
        日志文件是用来记录对数据库每一次更新活动的文件,在动态备份方式中,必须建立日志文件,后援副本和日志文件综合起来才能有效地恢复数据库;在静态备份方式中,也可以建立日志文件,当数据库毁坏后可重新装入后援副本把数据库恢复到备份结束时刻的正确状态,然后利用日志文件,把已完成的事务进行重做处理,对故障发生时尚未完成的事务进行撤销处理。这样不必重新运行那些已完成的事务程序就可把数据库恢复到故障前某一时刻的正确状态。
        例如,在热备份期间的某时刻t1,系统把数据A=100备份到了磁带上,而在时刻t2,某一事务对A进行了修改使A=200。备份结束,后备副本上的A已是过时的数据了。为此,必须把备份期间各事务对数据库的修改活动登记下来,建立日志文件。这样,后备副本加上日志文件就能把数据库恢复到某一时刻的正确状态。
        事务在运行过程中,系统把事务开始、事务结束(包括COMMIT和ROLLBACK),以及对数据库的插入、删除、修改等每一个操作作为一个登记记录存放到日志文件中。每个记录包括的主要内容有:执行操作的事务标识、操作类型、更新前数据的旧值(对插入操作而言此项为空值)、更新后的新值(对删除操作而言此项为空值)。登记的次序严格按并行事务操作执行的时间次序,同时遵循“先写日志文件”的规则。写一个修改到数据库中和写一个表示这个修改的日志记录到日志文件中是两个不同的操作,有可能在这两个操作之间发生故障,即这两个写操作只完成了一个,如果先写了数据库修改,而在日志记录中没有登记这个修改,则以后就无法恢复这个修改了。因此,为了安全,应该先写日志文件,即首先把修改记录写到日志文件上,然后再写数据库的修改。这就是“先写日志文件”的原则。
 
       数据库
        数据库(DataBase,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。
        系统使用的所有数据存储在一个或几个数据库中。
 
       数据库系统
        简单地说,数据库系统就是基于数据库的计算机应用系统。这样一个系统包括以下内容。
        ①以数据为主体的数据库。
        ②管理数据库的系统(DBMS)。
        ③支持数据库系统的计算机硬件环境和操作系统环境。
        ④管理和使用数据库系统的人——数据库管理员。
        1)数据库的定义和特征
        数据库,顾名思义就是存放数据的仓库,这种想当然的理解是不准确的。数据库对应的英文单词是DataBase,如果直译则是数据基地;而数据仓库则另有其词DataWarehouse。所以数据库和数据仓库不是同义词,数据仓库是在数据库技术的基础上发展起来的又一新的应用领域。
        数据库技术发展到今天已经是一门成熟的技术,但却没有一个被普遍接受的、严格的定义。数据库是相互关联数据的集合,这是大家公认的数据库的基本特征之一。下面一段话概括了数据库应该具备的一些特征,也可以把它作为数据库的定义。
        数据库是相互关联数据的集合,它用综合的方法组织数据,具有较小的数据冗余,可供多个用户共享,具有较高的数据独立性,具有安全控制机制,能够保证数据的安全、可靠,允许并发地使用数据库,能有效、及时地处理数据,并能保证数据的一致性和完整性。
        (1)相互关联的数据集合。数据库中的数据不是孤立的,数据与数据之间是相互关联的。也就是说,在数据库中不仅要能够表示数据本身,还要能够表示数据与数据之间的联系。比如在学籍管理中,有学生和课程两类数据,在数据库中除了要存放这两类数据之外,还要存放哪些学生选修了哪些课程或哪些课程由哪些学生选修这样的信息,这就反映了学生数据和课程数据之间的联系。
        (2)用综合的方法组织数据。数据库能够根据不同的需要按不同的方法组织数据,如可以用顺序组织方法、索引组织方法、聚集(Cluster)组织方法等。
        (3)低冗余与数据共享。由于在数据库技术之前,数据文件都是独立的,所以任何数据文件都必须含有满足某应用的全部数据。比如,人事部门有一个职工文件,教育部门也有一个职工文件,两个部门的职工文件中都有"职工基本情况"的数据,也就是说这一部分数据是重复存储的,如果还有第三、第四个部门也有类似的职工文件,那么重复存储所造成的空间浪费是很大的。在数据库中,可以共享类似"职工基本情况"这样的共用数据,从而降低数据的冗余度。
        (4)数据具有较高的独立性。数据独立性是指数据的组织和存储方式与应用程序互不依赖、彼此独立的特性。在数据库技术之前,数据文件的组织方式和应用程序是密切相关的,当改变数据结构时,相应的应用程序也必须随之修改,这样就大大增加了应用程序的开发代价和维护代价。而数据库技术却可以使数据的组织和存储方法与应用程序互不依赖,从而大大降低应用程序的开发代价和维护代价。
        (5)保证数据的安全、可靠。数据库技术要能够保证数据库中的数据是安全、可靠的。数据库要有一套安全机制,以便可以有效地防止数据库中的数据被非法使用或非法修改;数据库还要有一套完整的备份和恢复机制,以便保证当数据遭到破坏时(软件或硬件故障引起的),能立刻将数据完全恢复,从而保证系统能够连续、可靠地运行。
        (6)最大限度地保证数据的正确性。保证数据正确的特性在数据库中称为数据完整性。在数据库中可以通过建立一些约束条件保证数据库中的数据是正确的。比如输入年龄小于0或者大于200时,数据库能够主动拒绝这类错误。
        (7)数据可以并发使用并能同时保证数据的一致性。数据库中的数据是共享的,并且允许多个用户同时使用同一数据,这就要求数据库能够协调一致,保证各个用户之间对数据的操作不发生矛盾和冲突,即在多个用户同时使用数据库的情况下,能够保证数据的一致性和正确性。
        2)数据库管理系统
        数据库的各种功能和特性,并不是数据库中的数据所固有的,而是靠管理或支持数据库的系统软件——数据库管理系统(DataBase Management System, DBMS)提供的。一个完备的数据库管理系统应该具备上一节提到的各种功能,其任务就是对数据资源进行管理,并且使之能为多个用户共享,同时还能保证数据的安全性、可靠性、完整性、一致性,并要保证数据的高度独立性。一个数据库管理系统应该具备以下功能。
        (1)数据库定义功能。可以定义数据库的结构和数据库的存储结构,可以定义数据库中数据之间的联系,可以定义数据的完整性约束条件和保证完整性的触发机制等。
        (2)数据库操纵功能。可以完成对数据库中数据的操纵,可以装入、删除、修改数据,可以重新组织数据库的存储结构,可以完成数据库的备份和恢复等操作。
        (3)数据库查询功能。可以以各种方式提供灵活的查询功能,可以使用户方便地使用数据库中的数据。
        (4)数据库控制功能。可以完成对数据库的安全性控制、完整性控制、多用户环境下的并发控制等各方面的控制。
        (5)数据库通信功能。在分布式数据库或提供网络操作功能的数据库中还必须提供数据库的通信功能。
        3)数据库管理员
        从事数据库管理工作的人员称为数据库管理员(DataBase Administrator, DBA)。DBA有大量的工作要做,既有技术方面的工作,又有管理方面的工作,要参加数据库开发和使用的全部工作。总体来说,DBA的工作可以概括如下。
        (1)在数据库规划阶段要参与选择和评价与数据库有关的计算机软件和硬件,要与数据库用户共同确定数据库系统的目标和数据库应用需求,要确定数据库的开发计划。
        (2)在数据库设计阶段要负责数据库标准的制定和共用数据字典的研制,要负责各级数据库模式的设计,要负责数据库安全、可靠方面的设计。
        (3)在数据库运行阶段首先要负责对用户进行数据库方面的培训;要负责数据库的转储和恢复;要负责对数据库中的数据进行维护;要负责监视数据库的性能,并调整、改善数据库的性能,提高系统的效率;要继续负责数据库安全系统的管理;要在运行过程中发现问题、解决问题。
        4)数据库的发展
        数据库的核心任务是数据管理,它包括数据的分类、组织、编码、存储、检索和维护等。数据管理经历了以下3个阶段。
        (1)人工管理阶段。人工管理阶段是指计算机诞生的初期(20世纪50年代中期以前)。这个时期的计算机技术,从硬件看还没有磁盘这样的可直接存取的存储设备,从软件看没有操作系统,更没有管理数据的软件。这个时期数据管理的特点如下。
        ①数据不保存。因为计算机主要用于科学计算,一般也不需要长期保存数据,只是在完成某一个计算或课题时才将数据输入,然后不仅原始数据不保存,计算结果也不保存。
        ②没有文件的概念。这个时期的数据组织必须由每个程序的程序员自行组织和安排。
        ③一组数据对应一个程序。每组数据只对应一个应用,即使两个程序用到相同的数据,也必须各自定义、各自组织,数据无法共享、无法相互利用和互相参照。因此,程序和程序之间有大量的数据重复。
        ④没有形成完整的数据管理的概念。由于以上几个特点及没有对数据进行管理的软件系统,所以这个时期的每个程序都要包括数据存取方法、输入输出方法和数据组织方法等。因为程序是直接面向存储结构的,所以存储结构的任何一点修改,都会导致程序的修改,程序与数据不具有独立性。
        (2)文件系统阶段。文件系统阶段是指20世纪50年代后期到60年代中期这一阶段。从那时起,计算机不仅大量用于科学计算,也开始大量用于信息管理。像磁盘这样的直接存取存储设备也已经出现,在软件方面也有了操作系统和高级语言,还有了专门用于数据管理的软件,即文件系统(或操作系统的文件管理部分)。这个阶段的数据管理具有以下特点。
        ①数据可以长期保存在磁盘上,也可以反复使用,即可以经常对文件进行查询、修改、插入和删除等操作。
        ②操作系统提供了文件管理功能和访问文件的存取方法,程序和数据之间有了数据存取的接口,程序开始通过文件名和数据打交道,可以不再关心数据的物理存放位置。因此,这时也有了数据的物理结构和数据的逻辑结构的区别。程序和数据之间有了一定的独立性。
        ③文件的形式已经多样化。由于有了磁盘这样的直接存取存储设备,文件也就不再局限于顺序文件,也有了索引文件、链表文件等。因而,对文件的访问可以是顺序访问,也可以是直接访问。但文件之间是独立的,它们之间的联系要通过程序去构造,文件的共享性还比较差。
        ④有了存储文件以后,数据就不再仅仅属于某个特定的程序,而是可以由多个程序反复使用。但文件结构的设计仍然是基于特定的用途,程序仍然是基于特定的物理结构和存取方法编制的。因此,数据的存储结构和程序之间的依赖关系并未根本改变。
        ⑤数据的存取基本上以记录为单位。
        (3)数据库系统阶段。数据库系统阶段从20世纪60年代后期开始,数据库技术的诞生既有计算机技术的发展做依托,又有数据管理的需求做动力。数据库的数据不再是面向某个应用或某个程序,而是面向整个企业(组织)或整个应用。
 
       线程
        传统的进程有两个基本属性:可拥有资源的独立单位;可独立调度和分配的基本单位。引入线程的原因是进程在创建、撤销和切换中,系统必须为之付出较大的时空开销,故在系统中设置的进程数目不宜过多,进程切换的频率不宜太高,这就限制了并发程度的提高。引入线程后,将传统进程的两个基本属性分开,线程作为调度和分配的基本单位,进程作为独立分配资源的单位。用户可以通过创建线程来完成任务,以减少程序并发执行时付出的时空开销。
        例如,在文件服务进程中可设置多个服务线程,当一个线程受阻时,第二个线程可以继续运行,当第二个线程受阻时,第三个线程可以继续运行……从而显著地提高了文件系统的服务质量及系统的吞吐量。
        这样,对于拥有资源的基本单位,不用频繁地切换,进一步提高了系统中各程序的并发程度。需要说明的是,线程是进程中的一个实体,是被系统独立分配和调度的基本单位。线程基本上不拥有资源,只拥有一点运行中必不可少的资源(如程序计数器、一组寄存器和栈),它可与同属一个进程的其他线程共享进程所拥有的全部资源。
        线程也具有就绪、运行和阻塞3种基本状态。由于线程具有许多传统进程所具有的特性,故称为“轻型进程(Light-Weight Process)”;传统进程称为“重型进程(Heavy-Weight Process)”。线程可创建另一个线程,同一个进程中的多个线程可并发执行。
        线程分为用户级线程(User-Level Threads)和内核支持线程(Kernel-Supported Threads)两类。用户级线程不依赖于内核,该类线程的创建、撤销和切换都不利用系统调用来实现;内核支持线程依赖于内核,即无论是在用户进程中的线程,还是在系统中的线程,它们的创建、撤销和切换都利用系统调用来实现。某些系统同时实现了两种类型的线程。
        与线程不同的是,不论是系统进程还是用户进程,在进行切换时,都要依赖于内核中的进程调度。因此,不论是什么进程都是与内核有关的,是在内核支持下进行切换的。尽管线程和进程表面上看起来相似,但它们在本质上是不同的。
   题号导航      2018年下半年 网络规划设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第4题    在手机中做本题