免费智能真题库 > 历年试卷 > 网络工程师 > 2023年上半年 网络工程师 上午试卷 综合知识
  第18题      
  知识点:   net   网关   虚拟局域网   端口   交换机   无源光网络   以太网
  关键词:   VLAN   端口   家庭网关   交换机   以太网无源光网络   网关   网络   无源光网络   以太网        章/节:   局域网       

 
在EPON (Ethernet Passive Optical Network,以太网无源光网络)中,如果用户端的家庭网关或者交换机是运营商提供并统一进行VLAN管理,那么在UNI端口上VLAN操作模式优先配置为()。
 
 
  A.  标记模式
 
  B.  透传模式
 
  C.  Trunk模式
 
  D.  Translation模式
 
 
 

  相关试题:VLAN          更多>  
 
  第63题    2021年上半年  
   24%
下列命令片段含义是( )。
<Huawei> system-view
(Huawei] interface vlanif 2
[Huawei-Vlanif2] u..
  第61题    2022年下半年  
   15%
VLAN配置命令port-isolate enable的含义是(),配置命令port trunk allow-pass vlan 10to30的含义是()。
  第62题    2013年上半年  
   38%
关于VLAN,下面的描述中正确的是(62)。
   知识点讲解    
   · net    · 网关    · 虚拟局域网    · 端口    · 交换机    · 无源光网络    · 以太网
 
       net
        在网络管理中,最为常用的就是net命令家族。常用的net命令有以下几个。
        .net view命令:显示由指定的计算机共享的域、计算机或资源的列表。
        .net share:用于管理共享资源,使网络用户可以使用某一服务器上的资源。
        .net use命令:用于将计算机与共享的资源相连接或断开,或者显示关于计算机连接的信息。
        .net start命令:用于启动服务,或显示已启动服务的列表。
        .net stop命令:用于停止正在运行的服务。
        .net user命令:可用来添加或修改计算机上的用户账户,或者显示用户账户的信息。
        .net config命令:显示正在运行的可配置服务,或显示和更改服务器服务或工作站服务的设置。
        .net send命令:用于将消息(可以是中文)发送到网络上的其他用户、计算机或者消息名称上。
        .net localgroup命令:用于添加、显示或修改本地组。
        .net accounts命令:可用来更新用户账户数据库、更改密码及所有账户的登录要求。
 
       网关
        网关是最复杂的网络互联设备,它用于连接网络层之上执行不同协议的子网,组成异构型的互联网。为了实现异构型设备之间的通信,网关要对不同的传输层、会话层、表示层和应用层协议进行翻译和变换。
        由于工作复杂,因此用网关进行网络互联时效率比较低,而且透明性不好。因而网关往往用于针对某种特殊用途的专用连接。有时并不划分路由器和网关,而把网络层及其以上进行协议转换的互联设备统称为网关。
 
       虚拟局域网
               VLAN的概念
               虚拟局域网(Virtual Local Area Network, VLAN),是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的新兴数据交换技术。
               VLAN技术的出现,主要为了解决交换机在进行局域网互联时无法限制广播的问题。这种技术可以把一个LAN划分成多个逻辑的LAN——VLAN,每个VLAN是一个广播域,VLAN内的主机间通信就和在一个LAN内一样,而VLAN间则不能直接互通,这样广播报文被限制在一个VLAN内。
               VLAN是建立在物理网络基础上的一种逻辑子网,因此建立VLAN需要相应的支持VLAN技术的网络设备。当网络中的不同VLAN间进行相互通信时,需要路由的支持,这时就需要增加路由设备——要实现路由功能,既可采用路由器,也可采用3层交换机来完成。
               VLAN的划分方法
               1)根据端口来划分VLAN
               许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1~5端口被定义为虚拟网AAA,同一交换机的6~8端口组成虚拟网BBB。这样做允许各端口之间的通信,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。
               第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。
               以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。
               2)根据MAC地址划分VLAN
               根据MAC地址划分VLAN的方法是根据每个主机的MAC地址来划分VLAN,即对每个MAC地址的主机都配置它属于哪个组。这种划分VLAN方法的最大优点是,当用户物理位置移动时,即从连接一个交换机换到连接其他交换机时,VLAN不用重新配置。所以,可认为这种根据MAC地址划分的方法是基于用户的VLAN。这种方法的缺点是,初始化时所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置是非常累的。而且这种划分的方法也导致交换机执行效率的降低,因为在每一个交换机的端口都可能存在很多个VLAN组的成员,这样就无法限制广播包了。另外,对于使用笔记本电脑的用户来说,他们的网卡可能经常更换,这样VLAN就必须不停地配置。
               3)根据网络层划分VLAN
               根据网络层划分VLAN的方法是根据每个主机的网络层地址或协议类型(如果支持多协议)划分VLAN。虽然这种划分方法是根据网络地址,比如IP地址,但它不是路由,与网络层的路由毫无关系。
               这种方法的优点是:用户的物理位置改变了,不需要重新配置所属的VLAN,而且可以根据协议类型来划分VLAN,这对网络管理者来说很重要;还有,这种方法不需要附加的帧标签来识别VLAN,这样可以减少网络的通信量。
               这种方法的缺点是效率低,因为检查每一个数据包的网络层地址是需要消耗处理时间的(相对于前面两种方法),一般的交换机芯片都可以自动检查网络上数据包的以太网帧头,但要让芯片能检查IP帧头,需要更高的技术,同时也更费时。当然,这与各个厂商的实现方法有关。
               4)根据IP组播划分VLAN
               IP组播实际上也是一种VLAN的定义,即认为一个多播组就是一个VLAN。根据IP组播划分VLAN的方法将VLAN扩大到了广域网,因此这种方法具有更大的灵活性,而且也很容易通过路由器进行扩展。当然,这种方法不适合局域网,主要是效率不高。
               5)基于规则的VLAN
               基于规则的VLAN也称为基于策略的VLAN。这是最灵活的VLAN划分方法,具有自动配置的能力,能够把相关的用户连成一体,在逻辑划分上称为"关系网络"。网络管理员只需在网管软件中确定划分VLAN的规则(或属性),当一个站点加入网络时,将会被"感知",并被自动地包含进正确的VLAN中。同时,对站点的移动和改变也可自动识别和跟踪。
               采用这种方法,整个网络可以非常方便地通过路由器扩展网络规模。有的产品还支持一个端口上的主机分别属于不同的VLAN,这在交换机与共享式集线器共存的环境中显得尤为重要。自动配置VLAN时,交换机中的软件自动检查进入交换机端口的广播信息的IP源地址,然后软件自动将这个端口分配给一个由IP子网映射成的VLAN。
               VLAN的标准
               对VLAN的标准,这里只介绍两种比较通用的标准。当然也有一些公司拥有自己的标准,比如Cisco公司的ISL标准,虽然不是一种大众化的标准,但是由于Cisco Catalyst交换机的大量使用,ISL也成为一种不是标准的标准了。
               1)802.10 VLAN标准
               1995年,Cisco公司提倡使用IEEE 802.10协议。在此之前,IEEE 802.10曾经在全球范围内作为VLAN安全性的统一规范。Cisco公司试图采用优化后的802.10帧格式在网络上传输FrameTagging模式中所必需的VLAN标签。然而,大多数802委员会的成员都反对推广802.10。因为,该协议是基于FrameTagging方式的。
               2)802.1q
               1996年3月,IEEE 802.1 Internetworking(网络互联)委员会结束了对VLAN初期标准的修订工作。新出台的标准进一步完善了VLAN的体系结构,统一了FrameTagging方式中不同厂商的标签格式,并制定了VLAN标准在未来一段时间内的发展方向,形成的802.1q的标准在业界获得了广泛的推广。它成为VLAN史上的一块里程碑。802.1q的出现打破了虚拟网依赖于单一厂商的僵局,从一个侧面推动了VLAN的迅速发展。另外,来自市场的压力使各大网络厂商立刻将新标准融合到他们各自的产品中。
               3)Cisco ISL标签
               ISL(Inter-Switch Link)是Cisco公司的专有封装方式,因此只能在Cisco的设备上支持。ISL是一个在交换机之间、交换机与路由器之间及交换机与服务器之间传递多个VLAN信息及VLAN数据流的协议,通过在交换机直接的端口配置ISL封装,即可跨越交换机进行整个网络的VLAN分配和配置。
               VLAN帧标记
               IEEE 802.1q协议定义了VLAN帧标记的格式,在原来的以太帧中增加了4字节的帧标记字段,如下图所示。其中标记控制信息(Tag Control Information, TCI)包括Priority、CFI和VID 3个部分。
               
               帧格式
               .标记协议标识符(Tag Protocol Identifier, TPID)字段设定为0x8100,表示该帧包含802.1q标记。
               .Priority字段提供了由802.1q定义的8个优先级。当有多个帧等待发送时,按优先级发送数据包。
               .CFI(Canonical Format Indicator,规范格式指示)字段,为0表示以太网,为1表示FDDI和令牌环网。
               .VID字段表示VLAN标识符(0~4095),其中VID 0用于识别优先级,VID 4095保留未用,所以最多可配置4094个VLAN。
               虚拟局域网中继
               在划分成VLAN的交换网络中,交换机端口之间的连接分为两种:接入链路连接(Access-Link Connection)和中继连接(Trunk Connection)。
               接入链路只能连接具有标准以太网卡的设备,也只能传送属于单个VLAN的数据包。任何连接到接入链路的设备均属于同一广播域。
               中继链路是在一条物理连接上生成多个逻辑连接,每个逻辑连接属于一个VLAN。在进入中继端口时,交换机在数据包中加入VLAN标记。这样,在中继链路另一端的交换机就不仅要根据目标地址,而且要根据数据包属于的VLAN进行转发决策。
               VTP与VTP修剪
               VLAN中继协议(VTP)用于在交换网络中简化VLAN的管理。VTP在交换网络中建立了多个管理域,同一管理域中的所有交换机共享VLAN信息。一台交换机只能参加一个管理域,不同管理域中的交换机不共享VLAN信息。通过VTP,可以在一台交换机上配置所有的VLAN,配置信息通过VTP报文可以传播到管理域中的所有交换机。
               VTP有3种工作模式:服务器模式、客户模式和透明模式。其中,服务器模式下,可以设置VLAN信息,服务器会自动将这些信息广播到网上其他交换机以统一配置;客户模式下,交换机不能配置VLAN信息,只能被动接受服务器的VLAN配置;透明模式下,可以配置VLAN信息,但是不广播自己的VLAN信息,同时它可以接收服务器发来的VLAN信息后并不使用,而是直接转发给别的交换机。
               在默认情况下,所有交换机通过中继链路连接在一起,如果VLAN中的任何设备发出一个广播包、组播包或者一个未知的单播数据包,交换机都会将其洪泛(Flood)到所有与源VLAN端口相关的各个输出端口(包括中继端口)。在很多情况下,这种洪泛转发是必要的,特别是在VLAN跨越多个交换机的情况下。然而,如果相邻的交换机上不存在源VLAN的活动窗口,则这种洪泛发送的数据包是无用的。
               为了解决这个问题,可以使用静态或动态的修剪方法。静态修剪就是手工剪掉中继链路上不活动的VLAN。但是,手工修剪会遇到一些问题,主要是必须根据网络拓扑结构的改变经常重新配置中继链路。在多个交换机组成多个VLAN的网络中,这种工作方式很容易出错。
               VTP动态修剪允许交换机之间共享VLAN信息,也允许交换机从中继连接上动态地剪掉不活动的VLAN,使得所有共享的VLAN都是活动的。例如,交换机A告诉交换机B,它有两个活动的VLAN,即VLAN1和VLAN2,而交换机B告诉交换机A,它只有一个活动的VLAN1,于是,它们就共享这样的事实;VLAN2在它们之间的中继链路上是不活动的,应该从中继链路的配置中剪掉。这样做的好处显而易见,如果以后在交换机B上添加了VLAN2的成员,交换机B就会通知交换机A,它有了一个新的活动的VLAN2,于是,两个交换机就会动态地把VLAN2添加到它们之间的中继链路配置中。
 
       端口
        在TCP/IP网络中,传输层的所有服务都包含端口号,它们可以唯一区分每个数据包包含哪些应用协议。端口系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。
        端口号和设备IP地址的组合通常称作插口(socket)。任何TCP/IP实现所提供的服务都用知名的1~1023之间的端口号。这些知名端口号由Internet号分配机构(Internet Assigned Numbers Authority, IANA)来管理。例如,SMTP所用的TCP端口号是25,POP3所用的TCP端口号是110,DNS所用的UDP端口号为53,WWW服务使用的TCP端口号为80。FTP在客户与服务器的内部建立两条TCP连接,一条是控制连接,端口号为21;另一条是数据连接,端口号为20。
        256~1023之间的端口号通常由UNIX系统占用,以提供一些特定的UNIX服务。也就是说,提供一些只有UNIX系统才有的而其他操作系统可能不提供的服务。
        在实际应用中,用户可以改变服务器上各种服务的保留端口号,但要注意,在需要服务的客户端也要改为同一端口号。
 
       交换机
        交换机是一个具有简化、低价、高性能和高端口密集特点的交换产品,它是按每一个包中的MAC地址相对简单地决策信息转发,而这种转发决策一般不考虑包中隐藏的更深的其他信息。交换机转发数据的延迟很小,操作接近单个局域网性能,远远超过了普通桥接的转发性能。交换技术允许共享型和专用型的局域网段进行带宽调整,以减轻局域网之间信息流通出现的瓶颈问题。
        交换机的工作过程为:当交换机从某一节点收到一个以太网帧后,将立即在其内存中的地址表(端口号一MAC地址)进行查找,以确认该目的MAC的网卡连接在哪一个节点上,然后将该帧转发至该节点。如果在地址表中没有找到该MAC地址,也就是说,该目的MAC地址是首次出现,交换机就将数据包广播到所有节点。拥有该MAC地址的网卡在接收到该广播帧后,将立即做出应答,从而使交换机将其节点的“MAC地址”添加到MAC地址表中。
        交换机的三种交换技术:端口交换、帧交换和信元交换。
        (1)端口交换技术用于将以太模块的端口在背板的多个网段之间进行分配、平衡。
        (2)帧交换技术对网络帧的处理方式分为直通交换和存储转发。其中,直通交换方式可提供线速处理能力,交换机只读出网络帧的前14个字节,便将网络帧传送到相应的端口上;存储转发方式通过对网络帧的读取进行验错和控制。
        (3)信元交换技术采用长度(53个字节)固定的信元交换,由于长度固定,因而便于用硬件实现。
 
       无源光网络
        无源光网络(Passive Optical Network, PON)是一种点对多点的光纤传输和接入技术,下行采用广播方式,上行采用时分多址接入方式,可以灵活地组成树型、星型和总线型等各种拓扑结构。
        对于下行传输,采用基于时分复用的广播方式,由无源光分离器把由馈线光纤输入的光信号按功率平均分配到若干输出用户线光纤上,一般有1分16、1分32或1分64等3种分配方案。对于上行传输,采用时分多址接入方式,由无源光分路器把由用户线光纤上传的光信号耦合到馈线光纤并传输至光线路终端。整个系统可以同时传送语音/电话、数据和视频信号。
        PON可分为APON(ATM-PON,基于ATM的无源光网络)和EPON(Ethernet-PON,基于以太网的无源光网络)。
 
       以太网
        以太网是最早使用的局域网,也是目前使用最广泛的网络产品。以太网有10Mb/s、100Mb/s、1000Mb/s、10Gb/s等多种速率。
               以太网传输介质
               以太网比较常用的传输介质包括同轴电缆、双绞线和光纤三种,以IEEE 802.3委员会习惯用类似于10Base-T的方式进行命名。这种命名方式由三个部分组成:
               (1)10:表示速率,单位是Mb/s。
               (2)Base:表示传输机制,Base代表基带,Broad代表宽带。
               (3)T:传输介质,T表示双绞线、F表示光纤、数字代表铜缆的最大段长。
               传输介质的具体命名方案如下表所示,了解这些知识是十分必要的。
               
               以太网传输介质表
               
               以太网时隙
               时间被分为离散的区间称为时隙(Slot Time)。帧总是在时隙开始的一瞬间开始发送。一个时隙内可能发送0,1或多个帧,分别对应空闲时隙、成功发送和发生冲突的情况。
                      设置时隙理由
                      在以太网规则中,若发生冲突,则必须让网上每个主机都检测到。信号传播整个介质需要一定的时间。考虑极限情况,主机发送的帧很小,两冲突主机相距很远。在A发送的帧传播到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到了冲突,于是发送阻塞信号。B的阻塞信号还没有传输到A,A的帧已发送完毕,那么A就检测不到冲突,而误认为已发送成功,不再发送。由于信号的传播时延,检测到冲突需要一定的时间,所以发送的帧必须有一定的长度。这就是时隙需要解决的问题。
                      在最坏情况下,检测到冲突所需的时间
                      若A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为τ,假定A在t时刻开始发送一帧,则这个帧在t+τ时刻到达B,若B在t+τ-ε时刻开始发送一帧,则B在t+τ时就会检测到冲突,并发出阻塞信号。阻塞信号将在t+2τ时到达A。所以A必须在t+2τ时仍在发送才可以检测到冲突,所以一帧的发送时间必须大于2τ
                      按照标准,10Mb/s以太网采用中继器时,连接最大长度为2500m,最多经过4个中继器,因此规定对于10Mb/s以太网规定一帧的最小发送时间必须为51.2μs。51.2μs也就是512位数据在10Mb/s以太网速率下的传播时间,常称为512位时。这个时间定义为以太网时隙。512位=64字节,因此以太网帧的最小长度为64字节。
                      冲突发生的时段
                      (1)冲突只能发生在主机发送帧的最初一段时间,即512位时的时段。
                      (2)当网上所有主机都检测到冲突后,就会停发帧。
                      (3)512位时是主机捕获信道的时间,如果某主机发送一个帧的512位时,而没有发生冲突,以后也就不会再发生冲突了。
               提高传统以太网带宽的途径
               以往被淘汰、传统的以太网是以10Mb/s速率半双工方式进行数据传输的。随着网络应用的迅速发展,网络的带宽限制已成为进一步提高网络性能的瓶颈。提高传统以太网带宽的方法主要有以下3种。
                      交换以太网
                      以太网使用的CSMA/CD是一种竞争式的介质访问控制协议,因此从本质上说它在网络负载较低时性能不错,但如果网络负载很大时,冲突会很常见,因此导致网络性能的大幅下降。为了解决这一瓶颈问题,“交换式以太网”应运而生,这种系统的核心是使用交换机代替集线器。交换机的特点是,其每个端口都分配到全部10Mb/s的以太网带宽。若交换机有8个端口或16个端口,那么它的带宽至少是共享型的8倍或16倍(这里不包括由于减少碰撞而获得的带宽)。
                      交换以太网能够大幅度的提高网络性能的主要原因是:
                      .减少了每个网段中的站点的数量;
                      .同时支持多个并发的通信连接。
                      网络交换机有三种交换机制:直通(Cut through)、存储转发(Store and forward)和碎片直通(Fragment free Cut through)。
                      交换式以太网具有几个优点:第一,它保留现有以太网的基础设施,保护了用户的投资;第二,提高了每个站点的平均拥有带宽和网络的整体带宽;第三,减少了冲突,提高了网络传输效率。
                      全双工以太网
                      全双工技术可以提供双倍于半双工操作的带宽,即每个方向都支持10Mb/s,这样就可以得到20Mb/s的以太网带宽。当然这还与网络流量的对称度有关。
                      全双工操作吸引人的另一个特点是它不需要改变原来10Base-T网络中的电缆布线,可以使用和10Base-T相同的双绞线布线系统,不同的是它使用一对双绞线进行发送,而使用另一对进行接收。这个方法是可行的,因为一般10Base-T布线是有冗余的(共4对双绞线)。
                      高速服务器连接
                      众多的工作站在访问服务器时可能会在服务器的连接处出现瓶颈,通过高速服务器连接可以解决这个问题。使用带有高速端口的交换机(如24个10Mb/s端口,1个100Mb/s或1000Mb/s高速端口),然后再把服务器接在高速端口上并使用全双工操作。这样服务器就可以实现与网络200Mb/s或2000Mb/s的连接。
               以太网的帧格式
               以太网帧的格式如下图所示,包含的字段有前导码、目的地址、源地址、数据类型、发送的数据,以及帧校验序列等。这些字段中除了数据字段是变长以外,其余字段的长度都是固定的。
               
               以太网的帧结构
               注:字段的长度以字节为单位
               前导码(P)字段占用8字节。
               目的地址(DA)字段和源地址(SA)字段都是占用6字节的长度。目的地址用于标识接收站点的地址,它可以是单个的地址,也可以是组地址或广播地址,当地址中最高字节的最低位设置为1时表示该地址是一个多播地址,用十六进制数可表示为01:00:00:00:00:00,假如全部48位(每字节8位,6字节即48位)都是1时,该地址表示是一个广播地址。源地址用于标识发送站点的地址。
               类型(Type)字段占用两字节,表示数据的类型,如0x0800表示其后的数据字段中的数据包是一个IP包,而0x0806表示ARP数据包,0x8035表示RARP数据包。
               数据(Data)字段占用46~1500个不等长的字节数。以太网要求最少要有46字节的数据,如果数据不够长度,必须在不足的空间插入填充字节来补充。
               帧校验序列(FCS)字段是32位(即4字节)的循环冗余码。
   题号导航      2023年上半年 网络工程师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第18题    在手机中做本题