免费智能真题库 > 历年试卷 > 信息系统监理师 > 2021年上半年 信息系统监理师 下午试卷 案例
第4题      
知识点   验收测试   项目验收   验收委员会   验收报告   招标   配置审核   承建单位   验收阶段   测试报告   ISO   软件系统   开发阶段   测试计划   测试实施   背景   审核   生命周期   质量保证   一致性   评审

 
【说明】
某大型物流公司A为优化实物运递网络,拟建立专业仿真系统,提供快递处理中心仿真服务。企业通过招标确定了监理公司B和软件公司C,要求B公司对软件生命周期进行全过程监理,帮助用户建设一个高质量的、具有可持续生命力的软件系统
[事件1]在软件开发进行前,C公司编制了《质量保证计划》,内容如下:
(1)工程必要的背景说明,包括编写目的、背景、定义、参考资料等;
(2)规定了所要进行的技术和管理两方面的评审和检查工作,编制了评审和检查规程,制定了通过与否的检查标准; 
(3)指明了用以支持特定软件项目质量保证工作的工具、技术、方法;
(4)包含了对子项目承建单位的控制说明。
B公司监理工程师审查《质量保证计划》后,认为其符合ISO/IEC 20000-1的要求,内容充分详实,判定审查通过。
[事件2]在软件开发阶段后期,C公司申请系统验收,监理工程师收到C公司提交的验收标准、验收方案后,立即着手实施验收工作。验收完成后,监理工程师收集了测试报告、系统验收报告,完成了本阶段的监理工作。
[事件3]进入项目验收阶段,A公司与B公司协调成立了专门的验收委员会验收测试组。验收测试组的验收原则如下:
(1)原有测试和审核结果凡可用的就利用,不必重做该项测试或审核; 
(2)B公司负责制定验收测试计划,验收测试组负责测试实施
(3)验收测试组的任务是验证软件功能和接口与设计文档具有一致性; 
(4)验收测试配置审核是验收评审前必须完成的两项主要检查工作。
 
问题:4.1   (8分)
(1)针对事件1,请判断监理工程师针对质量保证计划“内容充分详实”的审查结论是否正确,如不正确请补充说明;
(2)针对事件1,请判断监理工程师审查过程是否合理,并说明理由。
 
问题:4.2   (5分)
针对事件2,请指出监理工程师的监理工作是否完整,并说明理由。
 
问题:4.3   (4分)
针对事件3,请判断验收测试组的验收原则是否正确。(正确打√,错误打×)
 
 
 



   知识点讲解    
   · 验收测试    · 项目验收    · 验收委员会    · 验收报告    · 招标    · 配置审核    · 承建单位    · 验收阶段    · 测试报告    · ISO    · 软件系统    · 开发阶段    · 测试计划    · 测试实施    · 背景    · 审核    · 生命周期    · 质量保证    · 一致性    · 评审
 
       验收测试
        验收测试是部署软件之前的最后一个测试操作。验收测试的目的是确保软件准备就绪,并且可以让最终用户将其用于执行软件的既定功能和任务。验收测试是向未来的用户表明系统能够像预定要求的那样工作。经集成测试后,已经按照设计把所有的模块组装成一个完整的软件系统了,接口错误也已经基本排除了,接着就应该进一步验证软件的有效性,这就是验收测试的任务,即软件的功能和性能是否如同用户所合理期待的那样。
        验收测试的结果有两种可能:一种是功能和性能指标满足软件需求说明的要求,用户可以接受;另一种是软件不满足软件需求说明的要求,用户无法接受。项目进行到这个阶段才发现严重错误和偏差一般很难在预定的工期内改正,因此必须与用户协商,寻求一个妥善解决问题的方法。
               验收测试的常用策略
               验收测试通常可以分为正式验收和非正式验收,具体选择的策略通常建立在合同需求、组织和公司标准,以及应用领域的基础上。
                      正式验收测试
                      正式验收测试是一项管理严格的过程,它通常是系统测试的延续。计划和设计这些测试的周密和详细程度不亚于系统测试。选择的测试用例应该是系统测试中所执行测试用例的子集。不要偏离所选择的测试用例方向,这一点很重要。在很多组织中,正式验收测试是完全自动执行的。
                      在某些组织中,开发组织(或其独立的测试小组)与最终用户组织的代表一起执行验收测试。在其他组织中,验收测试则完全由最终用户组织执行,或者由最终用户组织选择人员组成一个客观公正的小组来执行。这种测试形式的优点是:
                      .要测试的功能和特性都是已知的。
                      .测试的细节是已知的,并且可以对其进行评测。
                      .这种测试可以自动执行,支持回归测试。
                      .可以对测试过程进行评测和监测。
                      .可接受性标准是已知的。
                      缺点包括:
                      .要求大量的资源和计划。
                      .这些测试可能是系统测试的再次实施。
                      .可能无法发现软件中由于主观原因造成的缺陷,这是因为只查找了预期要发现的缺陷。
                      非正式验收测试
                      在非正式验收测试中,执行测试过程的限定不像正式验收测试中那样严格。在此测试中,确定并记录要研究的功能和业务任务,但没有可以遵循的特定测试用例。测试内容由各测试员决定。这种验收测试方法不像正式验收测试那样组织有序,而且更为主观。
                      大多数情况下,非正式验收测试是由最终用户组织执行的。这种测试形式的优点是:
                      .要测试的功能和特性都是已知的。
                      .可以对测试过程进行评测和监测。
                      .可接受性标准是已知的。
                      .与正式验收测试相比,可以发现更多由于主观原因造成的缺陷。
                      缺点包括:
                      .要求资源、计划和管理资源。
                      .无法控制所使用的测试用例。
                      .最终用户可能沿用系统工作的方式,并可能无法发现缺陷。
                      .最终用户可能专注于比较新系统与遗留系统,而不是专注于查找缺陷。
                      .用于验收测试的资源不受项目的控制,并且可能受到压缩。
               验收测试的条件
               在真正进行用户验收测试之前,一般应该已经完成了以下工作(也可以根据实际情况有选择地采用或增加)。
               (1)软件开发已经完成,并全部解决了已知的软件缺陷。
               (2)验收测试计划已经过评审和批准,并且置于文档控制之下。
               (3)对软件需求说明书的审查已经完成。
               (4)对概要设计及详细设计的审查已经完成。
               (5)对所有关键模块的代码审查已经完成。
               (6)对单元、集成、系统测试计划和报告的审查已经完成。
               (7)所有的测试脚本已完成,并至少执行过一次,且通过评审。
               (8)使用配置管理工具且代码置于配置控制之下。
               (9)软件问题处理流程已经就绪。
               (10)已经制定、评审并批准验收测试完成标准。
               验收测试的过程
               (1)软件需求分析:了解软件功能和性能要求、软硬件环境要求等,并特别要了解软件的质量要求和验收要求。
               (2)编制《验收测试计划》和《项目验收准则》:根据软件需求和验收要求编制测试计划,制定需测试的测试项,制定测试策略及验收通过准则,并制订出经过客户参与评审的计划。
               (3)测试设计和测试用例设计:根据《验收测试计划》和《项目验收准则》编制测试用例,并经过评审。
               (4)测试环境搭建:,建立测试的硬件环境和软件环境等(可在委托客户提供的环境中进行测试)。
               (5)测试实施:测试并记录测试结果。
               (6)测试结果分析:根据验收通过准则分析测试结果,做出验收是否通过的决定,给出测试评价。
               (7)测试报告:根据测试结果编制缺陷报告和验收测试报告,并提交给客户。
               软件配置审核
               软件配置审核包括审查和审核。
               审查是指审查可执行程序、源程序、配置脚本、测试程序或脚本、主要的开发类文档和主要的管理类文档。
               通常,正式的审核过程分为5个步骤,即计划、预备会议(可选)、准备阶段、审核会议和问题追踪。预备会议是指对审核内容进行介绍并讨论。准备阶段就是各责任人事先审核并记录发现的问题。审核会议是指最终确定工作产品中包含的错误和缺陷。
               审核要达到的基本目标是根据共同制定的审核表,尽可能地发现被审核内容中存在的问题,并最终得到解决。在根据相应的审核表进行文档审核和源代码审核时,还要注意文档与源代码的一致性。
               在实际的验收测试执行过程中,常常会发现文档审核是最难的工作,一方面,由于市场需求等方面的压力使这项工作常常被弱化或推迟,造成持续时间变长,加大文档审核的难度;另一方面,文档审核中不易把握的地方非常多,每个项目都有一些特别的地方,而且也很难找到可用的参考资料。
               对软件需求说明书的审查,可以从清晰性、完整性、依从性、一致性、可行性和可管理性等几个方面考虑。对软件设计说明书(详细设计说明书、概要设计说明书)的审查,可以从清晰性、完整性、依从性、一致性、可行性、数据使用性、功能性、接口、可维护性、性能、可靠性、易测性和可追溯性等方面考虑。对测试计划(单元测试计划、集成测试计划、确认测试计划、系统测试计划)的审查,可以从完整性、依从性、一致性、正确性、详细级别/程度、易测性/可行性和可追溯性等方面考虑。对软件编码规范的审查,可以考虑源程序文档化、数据说明、输入输出等方面,评审的目的是为了使程序具有良好的风格,便于阅读。
               可执行程序的测试
               在文档审核、源代码审核、配置脚本审核、测试程序或脚本审核都顺利完成后,就可以进行验收测试的最后一个步骤——可执行程序的测试了,包括功能、性能等方面的测试,每种测试也都包括目标、启动标准、活动、完成标准和度量5个部分。
               不能直接使用开发方提供的可执行程序用于测试,而要按照开发方提供的编译步骤,从源代码重新生成可执行程序。
               验收测试的内容
               具体的测试内容通常可以包括安装(升级)、启动与关机、功能测试(正例、重要算法、边界、时序、反例、错误处理)、性能测试(正常的负载、容量变化)、压力测试(临界的负载、容量变化)、配置测试、平台测试、安全性测试、恢复测试(在出现掉电、硬件故障或切换、网络故障等情况时,系统是否能够正常运行)及可靠性测试等。
               如果执行了所有的测试案例、测试程序或脚本,用户验收测试中发现的所有软件问题也都已解决,而且所有的软件配置均已更新和审核,可以反映出软件在用户验收测试中所发生的变化,用户验收测试就完成了。
 
       项目验收
        信息应用系统验收需由建设单位组织,监理辅助和承建单位配合。建设单位的工作主要是审核承建单位的验收方案并确定验收方案,承建单位的工作主要是内部测试准备、验收准备工作、验收申请提交和验收方案准备。监理的工作重点是软件配置审核和验收测试,具体分为文档审核、源代码审核、配置脚本审核、测试程序或脚本审核和可执行程序测试。
        信息应用系统验收的过程与信息网络系统的验收过程是一致的,其基本步骤为提出验收申请、制订验收计划、成立验收委员会、进行验收测试和配置审计、进行验收评审、形成验收报告并移交产品。验收的地点及条件要符合合同或验收方案的规定。
               验收委员会
               在信息应用系统验收阶段,验收委员会人数为不少于5人的单数,验收委员会的任务及其权限如下。
               (1)判定所验收的软件是否符合合同要求。
               (2)审定验收环境。
               (3)审定验收测试计划。
               (4)组织验收测试和配置审核,进行验收评审,并形成验收报告。
               验收的原则
               信息应用系统的验收,要遵循以下基本原则。
               (1)验收测试和配置审核是验收评审前必须完成的两项主要检查工作,由验收委员会主持。
               (2)测试组在认真审查需求规格说明、确认测试和系统测试的计划与分析结论的基础上制订验收测试计划。
               (3)配置审核组在需求规格说明、确认测试和系统测试等过程中形成的产品的变更管理及审核工作的基础上开展审计。
               (4)原有测试和审核结果凡可用的就可用,不必重做该项测试或审核。同时,可根据建设单位的要求临时增加一些测试和审核内容。
               (5)测试组在完成测试验收的同时,完成功能配置审核,即验证软件功能和接口与“合同”的一致性。
               (6)配置审核组完成物理配置审核,检查程序和文档的一致性、文档和文档的一致性、交付的产品与“合同”要求的一致性及符合有关标准的情况。
               验收的准则
               信息应用系统验收的准则如下。
               (1)软件产品符合“合同”或“验收标准”规定的全部功能和质量要求。
               (2)不同安全性关键等级的软件均通过了《软件测试细则》文档要求的各项测试。
               (3)文档齐全,符合“合同”或“验收标准”的要求及有关标准的规定。
               (4)文档和文档一致,同时程序和文档相符。
               (5)对被验收软件的可执行代码,在验收测试中查出的错误总数,以及错误严重性不超过建设单位事先约定的限制值。
               (6)配置审核时查出的交付文档中的错误总数不超过建设单位事先约定的限制值。
               验收报告
               验收报告的主要内容包括验收的各项内容、评价与验收结论、验收委员会全体成员签字及验收委员会主任的意见。
               如果验收未通过,则需要重新验收或进入合同争议。如果验收通过,则监理需要审查承建单位的项目资料清单、协助建设单位和承建单位交接项目资料、确保软件文档和软件的一致性,同时将开发软件做好备份,保管在安全的地方,文件材料归档。
 
       验收委员会
        在信息应用系统验收阶段,验收委员会人数为不少于5人的单数,验收委员会的任务及其权限如下。
        (1)判定所验收的软件是否符合合同要求。
        (2)审定验收环境。
        (3)审定验收测试计划。
        (4)组织验收测试和配置审核,进行验收评审,并形成验收报告。
 
       验收报告
        验收报告的主要内容包括验收的各项内容、评价与验收结论、验收委员会全体成员签字及验收委员会主任的意见。
        如果验收未通过,则需要重新验收或进入合同争议。如果验收通过,则监理需要审查承建单位的项目资料清单、协助建设单位和承建单位交接项目资料、确保软件文档和软件的一致性,同时将开发软件做好备份,保管在安全的地方,文件材料归档。
 
       招标
        下列工程建设项目包括项目的勘察、设计、施工、监理,以及与工程建设有关的重要设备、材料等的采购,因此必须进行招标。
        (1)大型基础设施、公用事业等关系社会公共利益、公众安全的项目。
        (2)全部或部分使用国有资金投资或者国家融资的项目。
        (3)使用国际组织或者外国政府贷款、援助资金的项目。
        任何单位和个人不得将依法必须进行招标的项目化整为零或者以其他任何方式规避招标。招标投标活动应当遵循公开、公平、公正和诚实信用的原则。必须进行招标的项目,其招标投标活动不受地区或者部门的限制。任何单位和个人不得违法限制或者排斥本地区、本系统以外的法人或其他组织参加投标,不得以任何方式非法干涉招标投标活动。
        招标分为公开招标和邀请招标。公开招标是指招标人以招标公告的方式邀请不特定的法人或者其他组织投标。邀请招标是指招标人以投标邀请书的方式邀请特定的法人或者其他组织投标。国务院发展计划部门确定的国家重点项目和省、自治区、直辖市人民政府确定的地方重点项目不适宜公开招标的,经国务院发展计划部门或者省、自治区、直辖市人民政府批准,可以进行邀请招标。
               招标代理机构
               招标人有权自行选择招标代理机构,委托其办理招标事宜。任何单位和个人不得以任何方式为招标人指定招标代理机构。招标人具有编制招标文件和组织评标能力的,可以自行办理招标事宜。任何单位和个人不得强制其委托招标代理机构办理招标事宜。依法必须进行招标的项目,招标人自行办理招标事宜的,应当向有关行政监督部门备案。
               招标代理机构是依法设立、从事招标代理业务并提供相关服务的社会中介组织。招标代理机构应当具备下列条件。
               (1)有从事招标代理业务的营业场所和相应资金。
               (2)有能够编制招标文件和组织评标的相应专业力量。
               (3)有符合规定条件,可以作为评标委员会成员人选的技术、经济等方面的专家库。
               从事工程建设项目招标代理业务的招标代理机构,其资格由国务院或者省、自治区、直辖市人民政府的建设行政主管部门认定。具体办法由国务院建设行政主管部门会同国务院有关部门制定。从事其他招标代理业务的招标代理机构,其资格认定的主管部门由国务院规定。
               招标代理机构与行政机关和其他国家机关不得存在隶属关系或者其他利益关系。招标代理机构应当在招标人委托的范围内办理招标事宜。
               招标公告
               招标人采用公开招标方式的,应当发布招标公告。依法必须进行招标的项目的招标公告,应当通过国家指定的报刊、信息网络或者其他媒介发布。招标公告应当载明招标人的名称和地址、招标项目的性质、数量、实施地点和时间,以及获取招标文件的办法等事项。
               招标人采用邀请招标方式的,应当向3个以上具备承担招标项目的能力、资信良好的特定法人或者其他组织发出投标邀请书。投标邀请书应当载明的事项与招标公告相同。
               招标人可以根据招标项目本身的要求,在招标公告或者投标邀请书中要求潜在投标人提供有关资质证明文件和业绩情况,并对潜在投标人进行资格审查。国家对投标人的资格条件有规定的,依照其规定。招标人不得以不合理的条件限制或者排斥潜在投标人,不得对潜在投标人给予歧视待遇。
               招标文件
               招标人应当根据招标项目的特点和需要编制招标文件。招标文件应当包括招标项目的技术要求、对投标人资格审查的标准、投标报价要求和评标标准等所有实质性要求和条件,以及拟签订合同的主要条款。
               国家对招标项目的技术、标准有规定的,招标人应当按照其规定在招标文件中提出相应要求。招标项目需要划分标段、确定工期的,招标人应当合理划分标段、确定工期,并在招标文件中载明。招标文件不得要求或者标明特定的生产供应以及含有倾向或者排斥潜在投标人的其他内容。
               招标人根据招标项目的具体情况,可以组织潜在投标人踏勘项目现场。招标人不得向他人透露已获取招标文件的潜在投标人的名称、数量,以及可能影响公平竞争的有关招标投标的其他情况。招标人设有标底的,标底必须保密。
               招标人对已发出的招标文件进行必要的澄清或者修改的,应当在招标文件要求提交投标文件截止时间至少15日前,以书面形式通知所有招标文件收受人。该澄清或者修改的内容为招标文件的组成部分。
               招标人应当确定投标人编制投标文件所需要的合理时间。但是,依法必须进行招标的项目,自招标文件开始发出之日起至投标人提交投标文件截止之日止,最短不得少于20日。
 
       配置审核
        配置审核的主要作用是作为变更控制的补充手段来确保某一变更需求已被切实实现。在某些情况下,它被作为正式的技术复审的一部分,但当软件配置管理是一个正式的活动时,该活动由SQA人员单独执行。
 
       承建单位
        负责具体实施的承建方应该有自己的项目管理,监理方代表项目建设方对承建方提出的工程计划进行监督和协调,对一些关键点进行控制。这些关键点主要属于进度、资金及质量的范畴,但不能涉及管理细节。工程项目管理主要以承建方为主,并强调在项目中组织并制定相关计划。
        在一个大型信息系统工程项目的建设中,承建方可能有多个,比如硬件提供商、软件开发商和系统集成商等。而在市场竞争日益激烈的今天,专业化能促进生产效率和提高生产质量,故而承建方常常分解成一定的层次结构,如总承包商和分包商等,从而使一部分人或企业专注于项目管理的科学化。
        从市场的角度看,总承包商既是买方又是卖方;从工程合同的角度来讲,他既要对建设方负全部法律责任,又要根据分包合同对分包商进行管理并履行义务,所有的主合同都会限定总承包商可以分包的最大范围。总承包商只能将某些具体的工程施工分包给分包商,但不能分包合同的责任和义务。总承包商不能期望通过分包逃避自己在合同中的法律和经济责任。
        作为分包商,一般情况下不与建设方直接发生合同关系。分包商只接受总承包商的统筹安排和调度,它只对总承包商承担分包合同内规定的责任并履行规定的义务。
        如果总承包商违反分包合同,则应该赔偿分包商的经济损失;分包商违反分包合同并造成建设方对总承包商的罚款或制裁,则分包商应该赔偿总承包商的损失。分包商是从总承包商处按分包合同索回其应得部分的,如果总承包商无力偿还债务,则分包商也同样蒙受损失,因此分包商的利益通常与总承包商的利益密切相关。
 
       验收阶段
        在项目验收阶段,监理进行进度控制的主要内容体现在以下两个方面。
        (1)审核承建单位工程整改计划的可行性,控制整改进度。
        (2)建议建设单位要求承建单位以初验合格报告作为启动试运行的依据。
 
       测试报告
        测试报告是整个项目的第一份供大家交流和供领导查阅的报告,人们对工程的满意程度和对工程质量的认可很大程度上来源于这份报告。通常在独立网络测试后,要总结测试数据,并基于此对测试过的同类产品进行排序;而系统内部的测试仅是得出一个简单的结论。
        测试报告呈现的内容和采取的表现形式非常重要,测试报告通常包含以下信息。
        ◆测试目的:用一句或两句话解释本次测试的目的。
        ◆结论:从测试中得到的信息推荐下一步的行动。
        ◆测试结果总结:对测试进行总结并由此得出结论。
        ◆测试内容和方法:简单地描述测试是怎样进行的,应该包括负载模式、测试脚本和数据收集方法,并且要解释采取的测试方法怎样保证测试结果和测试目的的相关性,以及测试结果是否可重现。
        ◆测试配置:网络测试配置用图形表示出来。
        测试报告的形式可以是一个简短的总结(2~4页),也可以是一个很长的书面文档(5~20页)。测试总结可以使用图形表示测试结果,如应用程序的响应时间、吞吐量和产品评估。而系统衰减性测试、配置规模测试和应用程序的功能/特性测试的测试报告还要包括更多的信息。
        在非常特殊的情况下,测试报告需要长达50页。它通常包括从项目开始到结束按时间编排的所有活动,以及非常详细的问题信息和解决问题的信息。
 
       ISO
        国际标准化组织(International Standardization Organization, ISO)成立于1947年,是世界上最庞大的国际标准化专门机构,也是联合国的甲级咨询机构。ISO每个标准的制定过程要经历下面的5个步骤。
        (1)每个技术委员会根据其工作范围拟定相应的工作计划,并报理事会下属的计划委员会批准。
        (2)相应的分技术委员会的工作组根据计划编写原始工作文件,称为工作草案。
        (3)分技术委员会或工作组再把工作草案提交技术委员会或分技术委员会作为待讨论的标准建议,称委员会草案(Committee Draft, CD),而ISO则要给每个CD分配一个唯一的编号,相应的文件被标记为ISO CD××××。委员会草案CD之间的文件叫作建议草案(Draft Proposal, DP)。
        (4)技术委员会将委员会草案发给其成员征求意见。若CD得到大多数成员的同意,则委员会草案(CD)就成为国际标准草案(Draft International Standard, DIS),其编号不变。
        (5)ISO的中央秘书处将DIS分别送给ISO的所有成员国投票表决。有75%的成员国赞成则通过。经ISO的理事会批准以后就成为正式的国际标准(International Standard, IS),其编号不变,标记为ISO××××。
 
       软件系统
        网络系统软件包括网络操作系统和网络协议等。网络操作系统是指能够控制和管理网络资源的软件,是由多个系统软件组成,在基本系统上有多种配置和选项可供选择,使得用户可根据不同的需要和设备构成最佳组合的互联网络操作系统。网络协议是保证网络中两台设备之间正确传送数据的约定。
 
       开发阶段
               单元测试
               单元测试又称模块测试,是针对软件设计的最小单位——程序模块,进行正确性检验的测试工作。其目的在于发现各模块内部可能存在的各种差错。单元测试需要从程序的内部结构出发设计测试用例。多个模块可以平行地独立进行单元测试。
               . 单元测试的内容。
               在进行单元测试时,测试者需要依据详细设计说明书和源程序清单,了解该模块的I/O条件和模块的逻辑结构,主要采用白盒测试的测试用例,辅之以黑盒测试的测试用例,使之对任何合理的输入和不合理的输入,都能鉴别和响应。这要求对所有的局部的和全局的数据结构、外部接口和程序代码的关键部分,都要进行桌面检查和严格的代码审查。
               在单元测试中进行的测试工作如下图所示,需要在五个方面对所测模块进行检查。
               
               单元测试的工作
               ①模块接口测试。
               在单元测试的开始,应对通过所测模块的数据流进行测试。如果数据不能正确地输入和输出,就谈不上进行其他测试。为此,对模块接口可能需要如下的测试项目:调用所测模块时的输入参数与模块的形式参数在个数、属性、顺序上是否匹配;所测模块调用子模块时,它输入给子模块的参数与子模块中的形式参数在个数、属性、顺序上是否匹配;是否修改了只作输入用的形式参数;输出给标准函数的参数在个数、属性、顺序上是否正确;全局量的定义在各模块中是否一致;限制是否通过形式参数来传送。
               当模块通过外部设备进行输入/输出操作时,必须附加如下的测试项目:文件属性是否正确;OPEN语句与CLOSE语句是否正确;规定的I/O格式说明与I/O语句是否匹配;缓冲区容量与记录长度是否匹配;在进行读写操作之前是否打开了文件;在结束文件处理时是否关闭了文件;正文书写/输入错误,以及I/O错误是否检查并做了处理。
               ②局部数据结构测试。
               模块的局部数据结构是最常见的错误来源,应设计测试用例以检查以下各种错误:不正确或不一致的数据类型说明;使用尚未赋值或尚未初始化的变量;错误的初始值或错误的缺省值;变量名拼写错或书写错;不一致的数据类型。可能的话,除局部数据之外的全局数据对模块的影响也需要查清。
               ③路径测试。
               由于通常不可能做到穷举测试,所以在单元测试期间要选择适当的测试用例,对模块中重要的执行路径进行测试。应当设计测试用例查找由于错误的计算、不正确的比较或不正常的控制流而导致的错误。对基本执行路径和循环进行测试,可以发现大量的路径错误。
               常见的不正确计算有:运算的优先次序不正确或误解了运算的优先次序;运算的方式错,即运算的对象彼此在类型上不相容;算法错;初始化不正确;运算精度不够;表达式的符号表示不正确。
               常见的比较和控制流错误有:不同数据类型的相互比较;不正确的逻辑运算符或优先次序;因浮点数运算精度问题而造成的两值比较不等;关系表达式中不正确的变量和比较符;“差1”错,即不正确地多循环一次或少循环一次;错误的或不可能的循环中止条件;当遇到发散的迭代时不能中止的循环;不适当地修改了循环变量等。
               ④错误处理测试。
               比较完善的模块设计要求能预见出错的条件,并设置适当的出错处理,以便在一旦程序出错时,能对出错程序重做安排,保证其逻辑上的正确性。这种出错处理也应当是模块功能的一部分。若出现下列情况之一,则表明模块的错误处理功能包含有错误或缺陷:出错的描述难以理解;出错的描述不足以对错误定位,不足以确定出错的原因;显示的错误与实际的错误不符;对错误条件的处理不正确;在对错误进行处理之前,错误条件已经引起系统的干预等。
               ⑤边界测试。
               在边界上出现错误是常见的。例如,在一段程序内有一个n次循环,当到达第n次重复时就可能会出错。另外,在取最大值或最小值时也容易出错。因此,要特别注意数据流、控制流中刚好等于、大于或小于确定的比较值时出错的可能性。对这些地方要仔细地选择测试用例,认真加以测试。
               此外,如果对模块运行时间有要求的话,还要专门进行关键路径测试,以确定最坏情况下和平均意义下影响模块运行时间的因素。这类信息对进行性能评价是十分有用的。
               虽然模块测试通常是由编写程序的人自己完成的,但是项目负责人应当关心测试的结果。所有测试用例和测试结果都是模块开发的重要资料,必须妥善保存。
               总之,模块测试针对的程序规模较小,易于查错;发现错误后容易确定错误的位置,易于排错,同时多个模块可以并行测试。做好模块测试可为后续的测试打下良好的基础。
               . 单元测试的步骤。
               通常单元测试是在编码阶段进行的。在源程序代码编制完成,经过评审和验证,确认没有语法错误之后,就开始进行单元测试的测试用例设计。利用设计文档,设计可以验证程序功能、找出程序错误的多个测试用例。对于每一组输入,应有预期的正确结果。
               模块并不是一个独立的程序,在考虑测试模块时,同时要考虑它和外界的联系,用一些辅助模块去模拟与所测模块相联系的其他模块。这些辅助模块分为两种:
               驱动模块(driver)——相当于所测模块的主程序。它接收测试数据,把这些数据传送给所测模块,最后再输出实测结果。
               桩模块(stub)——也叫做存根模块。用以代替所测模块调用的子模块。桩模块可以做少量的数据操作,不需要把子模块所有功能都带进来,但不允许什么事情也不做。
               所测模块、与它相关的驱动模块及桩模块共同构成了一个“测试环境”,如下图所示。驱动模块和桩模块的编写会给测试带来额外的开销。因为它们在软件交付时不作为产品的一部分一同交付,而且它们的编写需要一定的工作量。特别是桩模块,不能只简单地给出“曾经进入”的信息。为了能够正确地测试软件,桩模块可能需要模拟实际子模块的功能,这样,桩模块的建立就不是很轻松了。
               
               单元测试的测试环境
               模块的内聚程度高,可以简化单元测试过程。如果每一个模块只完成一种功能,则需要的测试用例数目将明显减少,模块中的错误也容易被预测和发现。
               当然,如果一个模块要完成多种功能,且以程序包(package)的形式出现的也不少见,这时可以将这个模块看成由几个小程序组成。必须对其中的每个小程序先进行单元测试要做的工作,对关键模块还要做性能测试。对支持某些标准规程的程序,更要着手进行互联测试。有人把这种情况特别称为模块测试,以区别单元测试。
               集成测试
               集成测试也叫做组装测试或联合测试。通常,在单元测试的基础上,需要将所有模块按照概要设计说明书和详细设计说明书的要求进行组装。
               . 组装时需要考虑的问题。
               ①在把各个模块连接起来的时候,穿越模块接口的数据是否会丢失;
               ②一个模块的功能是否会对另一个模块的功能产生不利的影响;
               ③各个子功能组合起来,能否达到预期要求的父功能;
               ④全局数据结构是否有问题;
               ⑤单个模块的误差累积起来,是否会放大,以至达到不能接受的程度。
               因此,在单元测试的同时可进行集成测试,发现并排除在模块连接中可能出现的问题,最终构成要求的软件系统。
               子系统的集成测试称为部件测试,它所做的工作是要找出组装后的子系统与系统需求规格说明之间的不一致。
               选择什么方式把模块组装起来形成一个可运行的系统,直接影响到模块测试用例的形式、所用测试工具的类型、模块编号的次序和测试的次序以及生成测试用例的费用和调试的费用。
               . 模块组装成为系统的方式。
               模块组装成为系统的方式有两种:一次性组装方式和增殖式组装方式。
               ①一次性组装方式(big bang)。
               它是一种非增殖式组装方式,也叫做整体拼装。使用这种方式,首先对每个模块分别进行模块测试,再把所有模块组装在一起进行测试,最终得到要求的软件系统。例如,有一个模块系统结构,如下图(a)所示。其单元测试和组装顺序如下图(b)所示。
               
               一次性组装方式
               在如上图(b)中,模块d1,d2,d3,d4,d5是对各个模块做单元测试时建立的驱动模块,s1,s2,s3,s4,s5是为单元测试而建立的桩模块。这种一次性组装方式试图在辅助模块的协助下,在分别完成模块单元测试的基础上,将所测模块连接起来进行测试。但是由于程序中不可避免地存在涉及模块间接口、全局数据结构等方面的问题,所以一次试运行成功的可能性并不很大。其结果是,发现有错误,却茫然找不到原因。查错和改错都会遇到困难。
               ②增殖式组装方式。
               这种组装方式又称渐增式组装,是首先对一个个模块进行模块测试,然后将这些模块逐步组装成较大的系统,在组装的过程中边连接边测试,以发现连接过程中产生的问题。最后通过增殖逐步组装成为要求的软件系统。
               . 自顶向下的增殖方式。这种组装方式是将模块按系统程序结构,沿控制层次自顶向下进行组装。其步骤如下:首先以主模块作为所测模块兼驱动模块,所有直属于主模块的下属模块全部用桩模块代替,对主模块进行测试。再采用深度优先(如下图所示为自顶向下的增殖方式)或广度优先的策略,用实际模块替换相应的桩模块,再用桩模块代替它们的直接下属模块,与已测试的模块或子系统组装成新的子系统。然后,进行回归测试(即重新执行以前做过的全部测试或部分测试),排除组装过程中引入新的错误的可能。最后,判断是否所有的模块都已组装到系统中。是,则结束测试;否则,转到B去执行。
               
               自顶向下的增殖方式
               自顶向下的增殖方式在测试过程中较早地验证了主要的控制和判断点。在一个功能划分合理的程序模块结构中,判断常常出现在较高的层次里,因而,能够较早地遇到这种问题。如果主要控制有问题,尽早发现它能够减少以后的返工,这是十分必要的。如果选用按深度方向组装的方式,可以首先实现和验证一个完整的软件功能,可先对逻辑输入的分支进行组装和测试,检查和克服潜藏的错误和缺陷,验证其功能的正确性,就为其后对主要加工分支的组装和测试提供了保证。此外,功能可行性较早地得到证实,还能够增强开发者和用户成功的信心。
               . 自底向上的增殖方式。这种组装方式是从程序模块结构的最底层模块开始组装和测试。因为模块是自底向上进行组装的,对于一个给定层次的模块,它的子模块(包括子模块的所有下属模块)已经组装并测试完成,所以不再需要桩模块。在模块的测试过程中需要从子模块得到的信息可以通过直接运行子模块得到。自底向上增殖的步骤如下:首先由驱动模块控制最底层模块的并行测试;也可以把最底层模块组合成实现某一特定软件功能的簇,由驱动模块控制它进行测试。再用实际模块代替驱动模块,与它已测试的直属子模块组装成为子系统。然后,为子系统配备驱动模块,进行新的测试。最后判断是否已组装到达主模块。是,则结束测试;否则,执行B。
               以如下图一(a)所示的一次性组装方式系统结构为例,可以用如下图二说明自底向上组装和测试的顺序。
               
               一次性组装方式
               
               自底向上的增殖方式
               . 混合增殖式测试。自顶向下增殖的方式和自底向上增殖的方式各有优缺点。一般来讲,一种方式的优点是另一种方式的缺点。
               自顶向下增殖方式的缺点是需要建立桩模块。要使桩模块能够模拟实际子模块的功能十分困难,因为,桩模块在接收了所测模块发送的信息后,需要按照它所代替的实际子模块功能返回应该回送的信息,这必将增加建立桩模块的复杂度,而且导致增加一些附加的测试。同时,涉及复杂算法和真正输入/输出的模块一般在底层,它们是最容易出问题的模块,到组装和测试的后期才遇到这些模块,一旦发现问题,就会导致过多的回归测试。而自顶向下增殖方式的优点是能够较早地发现主要控制方面的问题。
               自底向上增殖方式的缺点是“程序一直未能作为一个实体存在,直到最后一个模块加上去后才形成一个实体”。就是说,在自底向上组装和测试的过程中,对主要的控制直到最后才接触到。这种方式的优点是不需要桩模块,而建立驱动模块一般比建立桩模块容易,同时由于涉及到复杂算法和真正输入/输出的模块最先得到组装和测试,可以把最容易出问题的部分在早期解决。此外自底向上增殖的方式可以实施多个模块的并行测试,提高测试效率。因此,通常是把以上两种方式结合起来进行组装和测试。
               在进行集成测试时,测试者应当确定关键模块,对这些关键模块及早进行测试。关键模块至少应具有以下几种特征之一:
               . 满足某些软件需求;
               . 在程序的模块结构中位于较高的层次(高层控制模块);
               . 较复杂、较易发生错误;
               . 有明确定义的性能要求。
               在做回归测试时,也应该集中测试关键模块的功能。
               . 集成测试的组织和实施。
               集成测试是一种正规测试过程,必须精心计划,并与单元测试的完成时间协调起来。在制定测试计划时,应考虑如下因素:
               ①采用何种系统组装方法来进行集成测试。
               ②集成测试过程中连接各个模块的顺序。
               ③模块代码编制和测试进度是否与集成测试的顺序一致。
               ④测试过程中是否需要专门的硬件设备。
               解决了上述问题之后,就可以列出各个模块的编制、测试计划表,标明每个模块单元测试完成的日期、首次集成测试的日期、集成测试全部完成的日期、以及需要的测试用例和所期望的测试结果。
               在缺少软件测试所需要的硬件设备时,应检查该硬件的交付日期是否与集成测试计划一致。例如,若测试需要数字化仪和绘图仪,则相应的测试应安排在这些设备能够投入使用之时,并要为硬件的安装和交付使用保留一段时间,以留下时间余量。此外,在测试计划中需要考虑测试所需软件(驱动模块、桩模块、测试用例生成程序等)的准备情况。
               . 集成测试完成的标志。
               集成测试完成的标志主要有以下几项。
               ①成功地执行了测试计划中规定的所有集成测试。
               ②修正了所发现的错误。
               ③测试结果通过了专门小组的评审。
               集成测试应由专门的测试小组来进行,测试小组由有经验的系统设计人员和程序员组成。整个测试活动要在评审人员出席的情况下进行。
               在完成预定的集成测试工作之后,测试小组应负责对测试结果进行整理、分析,形成测试报告。测试报告中要记录实际的测试结果在测试中发现的问题、解决这些问题的方法以及解决之后再次测试的结果。此外还应提出目前不能解决、还需要管理人员和开发人员注意的一些问题,提供测试评审和最终决策,以提出处理意见。
               集成测试需要提交的文档有集成测试计划、集成测试规格说明和集成测试分析报告。
               确认测试
               确认测试的任务是验证软件的功能和性能及其他特性是否与用户的要求一致。对软件的功能和性能要求在软件需求规格说明中明确规定。确认测试一般包括有效性测试和软件配置复查,确认测试一般由独立的第三方测试机构进行。
               . 进行有效性测试。
               有效性测试是在模拟的环境下,运用黑盒测试的方法,验证所测软件是否满足需求规格说明书列出的需求。为此,需要制定测试计划、测试步骤以及具体的测试用例。通过实施预定的测试计划和测试步骤,确定软件的特性是否与需求相符,确保所有的软件功能需求都能得到满足,所有的软件性能需求都能达到。所有的文档都是正确且便于使用的。同时,对其他软件需求,例如可移植性、可靠性、易用性、兼容性、可维护性等,也都要进行测试,确认是否满足。
               在全部软件测试的测试用例运行完后,所有的测试结果可以分为两类。
               ①测试结果与预期的结果相符。这说明软件的这部分功能或性能特征与需求规格说明书相符合,从而接受了这部分程序。
               ②测试结果与预期的结果不符。这说明软件的这部分功能或性能特征与需求规格说明不一致,因此要为它提交一份问题报告。
               . 软件配置复查。
               软件配置复查的目的是保证软件配置的所有成分都齐全,各方面的质量都符合要求,具有维护阶段所必须的细节,而且已经编排好分类的目录。
               在确认测试的过程中,还应当严格遵守用户手册和操作手册中规定的使用步骤,以便检查文档资料的完整性和正确性。
               系统测试
               系统测试是将通过集成测试的软件,作为整个基于计算机系统的一个元素,与计算机硬件、外设、某些支持软件、数据和人员等其他系统元素结合在一起,在实际或者模拟运行(使用)环境下,对计算机系统进行一系列测试。
               系统测试的目的在于通过与系统的需求定义作比较,发现软件与系统定义不符合或与之矛盾的地方。
               验收测试
               验收测试是以用户为主的测试。软件开发人员和质量保证人员也应参加。由用户参加设计测试用例。使用用户界面输入测试数据,并分析测试的输出结果。一般使用生产中的实际数据进行测试。
               目前在国内实际软件开发,特别是系统集成的过程中,验收测试往往在系统测试完成后、项目最终交付前进行。验收测试的测试计划、测试方案与测试案例一般由开发方制定,由用户方与监理方联合进行评审。验收小组由开发方、用户方、监理方代表、主管单位领导及行业专家构成。与确认测试及系统测试不同的是,验收测试往往不是对系统的全覆盖测试,而是针对用户的核心业务流程进行的测试;同时,测试的执行人员也不是开发方的测试组成员,而是由用户方的使用人员完成。
               近年来,越来越多的开发方及用户方认识到对项目进行最终验收测试的重要意义,因此,由第三方完成的专业化全覆盖型技术测试得到了广泛应用。由专门从事测试工作的第三方机构,根据系统的需求分析、用户手册、培训手册等,在开发人员及最终使用人员的配合下,完成对系统全面的测试工作。
 
       测试计划
        制定一个全面的测试计划是负载测试成功的关键。定义明确的测试计划将确保制定的方案能完成负载测试目标。这部分内容描述负载测试计划过程,包括分析应用程序、定义测试目标、计划方案实施、检查测试目标。在任何类型的系统测试中,制定完善的测试计划是成功完成测试的基础。负载压力测试计划有助于:
        ①构建能够精确地模拟工作环境的测试方案。负载测试指在典型的工作条件下测试应用程序,并检测系统的性能、可靠性和容量等。
        ②了解测试需要的资源。应用程序测试需要硬件、软件和人力资源。开始测试之前,应了解哪些资源可用并确定如何有效地使用这些资源。
        ③以可度量的指标定义测试成功条件。明确的测试目标和标准有助于确保测试成功。仅定义模糊的目标(如检测重负载情况下的服务器响应时间)是不够的。明确的成功条件应类似于“50个客户能够同时查看他们的账户余额,并且服务器响应时间不超过1分钟”。
        下面详细论述负载压力测试计划过程的4个步骤。
               分析应用程序
               负载测试计划的第一步是分析应用程序。应该对硬件和软件组件、系统配置以及典型的使用模型有一个透彻的了解。应用程序分析可以确保使用的测试环境能够在测试中精确地反映应用程序的环境和配置。
                      确定系统组件
                      绘制一份应用程序结构示意图。如果可能,从现有文档中提取一份示意图。如果要测试的应用程序是一个较大的网络系统的一部分,应该确定要测试的系统组件。确保该示意图包括了所有的系统组件,例如客户机、网络、中间件和服务器等。
                      如下图所示说明了一个由许多Web用户访问的联机银行系统。各Web用户连接到同一数据库以转移现金和支票余额。客户使用不同的浏览器,通过Web方式连接到数据库服务器。
                      
                      联机银行系统应用布署
                      描述系统配置
                      增加更多详细信息以完善示意图。描述各系统组件的配置。应当掌握以下信息:
                      . 连接到系统的用户数;
                      . 应用程序客户端计算机的配置情况(硬件、内存、操作系统、软件、开发工具等);
                      . 使用的数据库和Web服务器的类型(硬件、数据库类型、操作系统、文件服务器等);
                      . 服务器与应用程序客户端之间的通信方式;
                      . 前端客户端与后端服务器之间的中间件配置和应用程序服务器;
                      . 可能影响响应时间的其他网络组件(调制解调器等);
                      . 通信设备的吞吐量以及每个设备可以处理的并发用户数。
                      例如,在如上图所示的示意图中,多个应用程序客户端在访问系统。客户端的配置如下表所示。
                      
                      客户端配置内容
                      分析使用模型
                      定义系统的典型使用方式,并确定需要重点测试的功能。考虑哪些用户使用系统、每种类型用户的数量,以及每个用户的典型任务。此外,还应考虑任何可能影响系统响应时间的后台负载。
                      例如,假设每天上午有200名员工登录记账系统,并且该办公室网络有固定的后台负载:50名用户执行各种字处理和打印任务。可以创建一个200个虚拟用户登录访问记账数据库的方案,并检测服务器的响应时间。要了解后台负载对响应时间的影响,可以在运行方案的网络中再模拟员工执行字处理和打印活动的负载。
                      任务分布
                      除定义常规用户任务外,还应该查看这些任务的分布情况。例如,假设银行用户使用一个中央数据库为跨越多个州和时区的客户提供服务。250个应用程序客户端分布在两个不同的时区,全都连接到同一个Web服务器中。其中150个在芝加哥,另外100个在底特律。每个客户端从上午9点开始工作,但由于处于不同的时区,因此在任何特定时间内都不会有超过150个的用户同时登录。可以分析任务分布,以确定数据库活动峰值期的发生时间,以及负载峰值期间的典型活动。
               定义测试目标
               开始测试之前,应精确地定义想要实现的目标。
                      以可度量的指标制定目标
                      确定了负载测试的一般性目标后,应该以可度量指标制定更具针对性的目标。为了提供评估基准,应精确地确定、区分可接受和不可接受测试结果的标准。
                      例如:
                      . 一般性目标产品评估:选择Web服务器的硬件。
                      . 明确目标产品评估:在一台HP服务器和一台NEC服务器上运行同一个包含300个虚拟用户的组。当300个用户同时浏览Web应用程序页面时,确定哪一种硬件提供更短的响应时间。
                      . 测试目标
                      ①度量最终用户的响应时间,完成一个业务流程需要多长时间;
                      ②定义最优的硬件配置,哪一种硬件配置可以提供最佳性能;
                      ③检查可靠性,系统无错误或无故障运行的时间长度或难度;
                      ④查看硬件或软件升级对性能或可靠性有何影响;
                      ⑤评估新产品,应选择哪些服务器硬件或软件;
                      ⑥度量系统容量,在没有显著性能下降的前提下,系统能够处理多大的负载;
                      ⑦确定瓶颈,哪些因素会延长响应时间。
                      确定测试的时间
                      负载测试应贯穿于产品的整个生命周期。如下表说明了在产品生命周期的各个阶段有哪些类型的测试与之相关。
                      
                      产品生命周期与测试类型
               计划方案实施
               下一步是确定如何实现测试目标。
                      定义性能度量的范围
                      可以度量应用程序中不同点的响应时间。根据测试目标确定在哪里运行Vuser(虚拟用户)以及运行哪些Vuser。
                      . 度量端到端的响应时间。
                      可以在前端运行GUI Vuser(图形用户界面用户)或RTE Vuser(终端用户)来度量典型用户的响应时间。GUI Vuser可以将输入提交给客户端应用程序并从该应用程序接收输出,以模拟实际用户;RTE Vuser则向基于字符的应用程序提交输入,并从该应用程序接收输出,以模拟实际用户。
                      可以在前端运行GUI或RTE Vuser来度量跨越整个网络(包括终端仿真器或GUI前端、网络和服务器)的响应时间。如下图所示为端到端的响应时间。
                      
                      端到端的响应时间
                      . 度量网络和服务器响应时间。
                      可以通过在客户机运行Vuser(非GUI或RTE Vuser)来度量网络和服务器的响应时间(不包括GUI前端的响应时间)。Vuser模拟客户端对服务器的进程调用,但不包括用户界面部分。在客户机运行大量Vuser时,可以度量负载对网络和服务器响应时间的影响。如下图所示为网络和服务器的响应时间。
                      
                      网络和服务器的响应时间
                      . 度量GUI响应时间。
                      可以通过减去前两个度量值,来确定客户端应用程序界面对响应时间的影响。GUI响应时间=端到端响应时间-网络和服务器响应时间。如下图所示为GUI响应时间。
                      
                      GUI响应时间
                      . 度量服务器响应时间。
                      可以度量服务器响应请求(不跨越整个网络)所花费的时间。通过在与服务器直接相连的计算机上运行Vuser,可以度量服务器性能。如下图所示为服务器响应时间。
                      
                      服务器响应时间
                      . 度量中间件到服务器的响应时间。
                      如果可以访问中间件及其API,便可以度量服务器到中间件的响应时间。可以使用中间件API创建Vuser,来度量中间件到服务器的性能。如下图所示为中间件到服务器响应时间。
                      定义Vuser活动
                      根据对Vuser类型的分析以及它们的典型任务和测试目标来创建Vuser脚本。由于Vuser模拟典型最终用户的操作,因此Vuser脚本应包括典型的最终用户任务。例如,要模拟联机银行客户端,应该创建一个执行典型银行任务的Vuser脚本。需要浏览经常访问的页面,以转移现金或支票余额。
                      
                      中间件到服务器响应时间
                      根据测试目标确定要衡量的任务,并定义这些任务的事务。这些事务度量服务器响应Vuser提交的任务所花费的时间(端到端时间)。例如,要查看提供账户余额查询的银行Web服务器的响应时间,则应在Vuser脚本中为该任务定义一个事务。
                      此外,可以通过在脚本中使用集合点来模拟峰值期活动。集合点指示多个Vuser在同一时刻执行任务。例如,可以定义一个集合点,以模拟70个用户同时更新账户信息的情况。
                      选择Vuser
                      确定用于测试的硬件配置之前,应该先确定需要的Vuser的数量和类型。要确定运行多少个Vuser和哪些类型的Vuser,请综合考虑测试目标来查看典型的使用模型。以下是一些一般性规则:
                      . 使用一个或几个GUI用户来模拟每一种类型的典型用户连接;
                      . 使用RTE Vuser来模拟终端用户;
                      . 运行多个非GUI或非RTE Vuser来生成每个用户类型的其余负载。
                      例如,假设有五种类型的用户,每种用户执行一个不同的业务流程,如下表所示。
                      
                      Vuser的数量和类型
                      选择测试硬件和软件
                      硬件和软件应该具有强大的性能和足够快的运行速度,以模拟所需数量的虚拟用户。
                      在确定计算机的数量和正确的配置时,请考虑以下事项。
                      . 建议在一台单独的计算机上运行测试工具主控台。
                      . 在一台Windows计算机只能运行一个GUI Vuser;而在一台UNIX计算机上则可以运行几个GUI Vuser。
                      . GUI Vuser测试计算机的配置应该尽量与实际用户的计算机配置相同。
                      关于每个测试组件的硬件要求,请参考下表一和下表二。要获得最佳性能,应满足表中所列要求。
                      
                      测试机硬件与软件要求(Windows配置要求)
                      注意:对于一个要运行许多事务的长方案,结果文件需要几个MB的磁盘空间。负载生成器计算机还需要几个MB的磁盘空间来存储临时文件(如果没有NFS)。有关运行时文件存储的详细信息,请参阅第10章“配置方案”。
                      有关最新的安装要求,请访问
                      http://www.mercuryinteractive.com/products/loadrunner/technical/
                      
                      测试机硬件与软件要求(UNIX配置要求)
                      注意:对于一个要运行许多事务的长方案,结果文件需要几个MB的磁盘空间。负载生成器计算机还需要几个MB的磁盘空间来存储临时文件(如果没有NFS)。有关运行时文件存储的详细信息,请参阅第10章“配置方案”。
               检查测试目标
               测试计划应该基于明确定义的测试目标。下面概述了常规的测试目标。
               ①度量最终用户响应时间。
               ②定义最优的硬件配置。
               ③检查可靠性。
               ④查看硬件或软件升级。
               ⑤评估新产品。
               ⑥确定瓶颈。
               ⑦度量系统容量。
                      度量最终用户响应时间
                      查看用户执行业务流程以及从服务器得到响应所花费的时间。例如,假设想要检测:系统在正常的负载情况下运行时,最终用户能否在20秒内得到所有请求的响应。如下图显示了一个银行应用程序的负载和响应时间度量之间的关系。
                      
                      负载和响应时间度量关系
                      定义最优的硬件配置
                      检测各项系统配置(内存、CPU速度、缓存、适配器、调制解调器)对性能的影响。了解系统体系结构并测试了应用程序响应时间后,可以度量不同系统配置下的应用程序响应时间,从而确定哪一种设置能够提供理想的性能级别。
                      例如,可以设置三种不同的服务器配置,并针对各个配置运行相同的测试,以确定性能上的差异。
                      . 配置1:200MHz、64MB RAM。
                      . 配置2:200MHz、128MB RAM。
                      . 配置3:266MHz、128MB RAM。
                      检查可靠性
                      确定系统在连续的高工作负载下的稳定性级别。可以创建系统负载:强制系统在短时间内处理大量任务,来模拟系统在数周或数月的时间内通常会遇到的活动类型。
                      查看硬件或软件升级
                      执行回归测试,以便对新旧版本的硬件或软件进行比较。可以查看软件或硬件升级对响应时间(基准)和可靠性的影响。应用程序回归测试需要查看新版本的效率和可靠性是否与旧版本相同。
                      评估新产品
                      可以运行测试,以评估单个产品和子系统在产品生命周期中的计划阶段和设计阶段的表现。例如,可以根据评估测试来选择服务器的硬件或数据库套件。
                      确定瓶颈
                      可以运行测试以确定系统的瓶颈,并确定哪些因素导致性能下降,例如,文件锁定、资源争用和网络过载。使用负载压力测试工具,以及网络和计算机监视工具以生成负载,并度量系统中不同点的性能。如下图所示为系统不同点的性能。
                      
                      系统不同点的性能
                      度量系统容量
                      度量系统容量,并确定系统在不降低性能的前提下能提供多少额外容量。要查看容量,可以查看现有系统中性能与负载间的关系,并确定出现响应时间显著延长的位置。该处通常称为响应时间曲线的“拐点”。确定了当前容量后,便可以确定是否需要增加资源以支持额外的用户。如下图所示为响应时间与负载关系。
                      
                      响应时间与负载关系
 
       测试实施
        标准符合性测试工具与一般功能和负载压力测试工具有着明显的不同,它是为明确的应用对象和测试目的服务的,具有更强的针对性,应用范围相对而言更具体、更狭隘一些。标准符合性测试的基本原理,就是将被测软件产品的功能与性能指标,和标准规定必须满足的功能和性能指标进行比较,从而确定软件产品对标准的符合程度。
        一般来说,标准符合性测试可以按以下步骤实施。
        ①阅读和理解标准:很多人可能不理解或者不认为应该将它归为标准符合性测试的第一步,但它确实是实施有效的标准化符合性测试的前提。因为,大多数情况下制定标准和进行标准符合性测试的不是同一组人,因此,在测试正式开始之前,首先就必须很好地阅读并理解标准的目的、意义、范围和具体的指标内容,否则测试结果就会产生偏差。
        ②确定测试工具:标准符合性自动化测试一般需要依靠特定的测试工具来完成,可以选择适当的商业化测试工具,也可以根据情况决定自主开发相应的测试工具。如前所述,由于标准具有特定性,所以大多数情况下,针对标准的符合性测试工具,需要测试组自行开发或者修改已有的测试工具。如果需要开发测试工具,则必须执行一个严格的开发流程,确保测试工具本身的正确性和有效性。
        ③确定用例文件:对于测试标准并不包含测试用例的,测试组需要根据标准规定的格式定义各种测试用例,当然应该包含正常的和异常的测试用例。
        ④执行用例文件:确定了相应的测试工具和测试用例后,就可以执行测试并记录测试执行的结果。
        ⑤分析测试结果:“标准符合性”顾名思义应该就有一个测试结果基准库,通常情况下,它规定了输入与输出的对应关系,标准符合性的测试过程就是将测试用例(被测产品)的输入输出与基准库定义的输入输出相比较,从而对与标准不一致的输入输出进行统计分析,确定测试结果以及被测产品对标准的符合程度。
        在测试结果的分析与评价上主要有两种形式:一种认为要全部符合标准才算通过,即Yes or No方式;一种则通过测试符合标准的程度来判定,如认为80%以上的符合率即为基本符合标准。
        正是信息技术的深入发展,及相关应用间方便快捷地进行通信和数据交换的迫切需要,使得信息技术标准化和标准符合性测试的重要性日益凸现。
        在实际应用中,根据不同的层面,对标准的分类有多种方式,这里仅从信息技术不同标准的内容划分为主要的四类,并就相应常用的测试原理进行了阐述。
        标准的价值在于应用。因此,如何准确高效地实施测试、衡量标准的应用是重要的环节。第三方测试机构代表国家对相关产品及相关设备进行评测的过程中,也是严格依据标准本身对产品进行标准符合性测试的,这必将进一步推动我国信息技术标准化建设更上新的台阶。
 
       背景
        .项目的承担者。
        .用户。
        .本项目和其他系统或机构的关系和联系。
 
       审核
        依据知识库内容加入的审核标准,由资深技术人员审核内容的正确性和完整性,避免与原有的知识库内容重复或冲突,给出审核意见后提交批准加入知识库中。
 
       生命周期
        IT服务生命周期由规划设计(Planning&Design)、部署实施(Implementing)、服务运营(Operation)、持续改进(Improvement)和监督管理(Supervision)5个阶段组成,简称“PIOIS”。
        (1)规划设计:从客户业务战略出发,以需求为中心,参照ITSS对IT服务进行全面系统的战略规划和设计,为IT服务的部署实施做好准备,以确保提供满足客户需求的IT服务。
        (2)部署实施:在规划设计基础上,依据ITSS建立管理体系、部署专用工具及服务解决方案。
        (3)服务运营:根据IT服务部署情况,依据ITSS,采用过程方法,全面管理基础设施、服务流程、人员和业务连续性,实现业务运营与IT服务运营的全面融合。
        (4)持续改进:根据IT服务运营的实际情况,定期评审IT服务满足业务运营的情况,以及IT服务本身存在的缺陷,提出改进策略和方案,并对IT服务进行重新规划设计和部署实施,以提高IT服务质量。
        (5)监督管理:本阶段主要依据ITSS对IT服务质量进行评价,并对IT服务供方的服务过程、交付结果实施监督和绩效评估。
 
       质量保证
        系统质量是指反映系统或产品满足规定或隐含需求的能力的特征和特性全体。软件质量管理是指对软件开发过程进行的独立的检查活动,由质量保证、质量规划和质量控制三个主要活动构成。质量保证是指为保证系统或软件产品充分满足用户要求的质量而进行的有计划、有组织的活动,其目的是开发高质量的系统。
               质量特性
               讨论系统质量首先要了解系统的质量特性。已经有多种软件质量模型来描述软件质量特性,目前较多采用的如ISO/IEC 9126软件质量模型和Mc Call软件质量模型。ISO/IEC 9126已经被ISO/ICE 25010系统和软件质量模型所取代,其主要改进包括将兼容性作和安全性作为质量特性,ISO/IEC 25012数据质量模型与ISO/IEC 25030使用质量模型作为补充。
                      ISO/ICE 25010系统和软件质量模型
                      ISO/ICE 25010系统和软件质量模型包含8个质量特性,每个特性由一组相关的质量子特性组成,如下图所示。该产品质量模型既可以用于软件,又可以用于任何包含软件的计算机系统。
                      
                      产品质量模型
                      其中,各质量特性和质量子特性的含义如下。
                      (1)功能适合性(functional suitability)。与一组功能及其指定的性质的存在有关的一组属性。功能是指满足规定或隐含需求的那些功能。
                      .功能完整性(functional completeness):与对规定任务和用户目标加以实现的功能是否完整有关的属性。
                      .功能适当性(functional appropriateness):与对规定任务和用户目标能否提供一组功能以及这组功能是否适合有关的属性。
                      .功能正确性(functional correctness):与能够得到正确或相符的结果或效果有关的产品或系统属性。
                      (2)性能效率(performance efficiency)。在规定条件下,系统的性能水平与所用资源量之间的关系有关的一组属性。
                      .时间特性(time behavior):与响应和处理时间以及软件执行其功能时的吞吐量有关的属性。
                      .资源利用率(resource utilization):与系统执行其功能时所使用的资源量以及使用资源的类型有关的属性。
                      .容量(capacity):与系统满足特定需求时指标参数的最大限制有关的属性。
                      (3)兼容性(compatibility)。与系统或组件与其他系统或组件进行信息交换,或在不同软硬件环境中执行所需功能有关的一组属性。
                      .共存性(co-existence):与同其他系统运行在同一环境使用相同的资源而不相互影响的能力相关的属性。
                      .互操作性(interoperability):与同其他指定系统进行交互操作的能力相关的属性。
                      (4)易用性(usability)。与为使用所需的努力和由一组规定或隐含的用户对这样使用所作的个别评价有关的一组属性。
                      .可识别性(appropriateness recognizability):与用户识别系统是否满足需求有关的属性。
                      .易学性(learnability):与用户为学习使用产品(例如操作控制、输入、输出)的有效性、效率、风险和满意度相关的属性。
                      .易操作性(operability):与用户为进行操作和操作控制所付出的努力有关的属性。
                      .错误防御(user error protection):与阻止用户错误输入有关的属性。
                      .界面美观性(user interface aesthetics):与系统用户界面使用户进行愉快满意交互有关的属性。
                      .可访问性(accessibility):与用户可访问系统完成特定目标的范围和能力有关的属性。
                      (5)可靠性(reliability)。与在规定的一段时间内和规定的条件下,系统维持在其性能水平有关的能力。
                      .成熟性(maturity):与正常操作情况下满足可靠性需求有关的属性。
                      .可用性(availability):与系统运行可用使用能力有关的属性。
                      .容错性(fault tolerance):与在系统错误或违反指定接口的情况下,维持指定的性能水平的能力有关的属性。
                      .易恢复性(recoverability):与在故障发生后,重新建立其性能水平并恢复直接受影响数据的能力,以及为达到此目的所需的时间和努力有关的属性。
                      (6)安全性(security)。与避免对程序及数据的非授权故意或意外访问的能力有关的系统属性。
                      .机密性(confidentiality):与系统确保只有授权才能访问其数据能力有关的属性。
                      .完整性(integrity):与系统防止未经授权对数据和程序进行访问和修改能力有关的属性。
                      .不可抵赖性(non-repudiation):与对系统使用行为及发生时间真实性有关的属性。
                      .可审计性(accountability):与对系统使用行为进行追踪有关的属性。
                      .真实性(authenticity):与证明主体或资源身份是所声称的身份有关的属性。
                      (7)可维护性(maintainability)。与进行规定的修改所需要的努力有关的一组属性。
                      .模块性(modularity):与所组成系统的模块独立性有关的属性。
                      .可复用性(reusability):与模块用于其他系统有关的属性。
                      .易分析性(analyzability):与为诊断缺陷或失效原因,或为判定待修改的部分所需努力有关的属性。
                      .易修改性(modifiability):与进行修改、排错或适应环境变换所需努力有关的属性。
                      .易测试性(testability):为确认经修改系统所需努力有关的属性。
                      (8)可移植性(portability)。与系统可从某一环境转移到另一环境的能力有关的一组属性。
                      .适应性(adaptability):与系统转移到不同环境时的处理或手段有关的属性。
                      .易安装性(installability):与在指定环境下对系统进行安装/卸载所需努力有关的属性。
                      .易替换性(replaceability):与一产品在该软件环境中用来替代指定的其他软件的可能和努力有关的属性。
                      Mc Call软件质量模型
                      Mc Call软件质量模型从软件产品的运行、修正、转移三个方面确定了11个质量特性,如下图所示。Mc Call也给出了一个三层模型框架,第一层是质量特性,第二层是评价准则,第三层是度量指标。
                      
                      Mc Call软件质量模型
               质量保证
               质量保证是指为保证系统或产品充分满足用户要求的质量而进行的有计划、有组织的活动,其目的是生产高质量的产品。在系统质量方面强调三个要点:首先系统必须满足用户规定的需求,与用户需求不一致的系统,就无质量可言;其次系统应遵循规定标准所定义的一系列开发准则,不遵循这些准则的系统,其质量难以得到保证;最后系统还应满足某些隐含的需求,例如希望有好的可理解性、可维护性等,而这些隐含的需求可能未被明确地写在用户规定的需求中,如果系统只满足它的显性需求而不满足其隐含需求,那么该系统的质量是令人担忧的。
               质量保证包括7个主要活动相关的各种任务,分别是应用技术方法、进行正式的技术评审、测试系统、标准的实施、控制变更、度量(metrics)、记录保存和报告。
 
       一致性
        在讨论一致性之前,先看一下CAP理论。它作为一种理论依据,使得在不同应用中,对一致性也有了不同的要求。CAP理论:简单地说,就是对于一个分布式系统,一致性(Consistency)、可用性(Availablity)和分区容忍性(Partition tolerance)三个特点最多只能三选二。
        一致性意味着系统在执行了某些操作后仍处在一个一致的状态,这点在分布式的系统中尤其明显。比如某用户在一处对共享的数据进行了修改,那么所有有权使用这些数据的用户都可以看到这一改变。简言之,就是所有的结点在同一时刻有相同的数据。
        可用性指对数据的所有操作都应有成功的返回。高可用性则是在系统升级(软件或硬件)或在网络系统中的某些结点发生故障的时候,仍可以正常返回。简言之,就是任何请求不管成功或失败都有响应。
        分区容忍性这一概念的前提是在网络发生故障的时候。在网络连接上,一些结点出现故障,使得原本连通的网络变成了一块一块的分区,若允许系统继续工作,那么就是分区可容忍的。
        在数据库系统中,事务的ACID属性保证了数据库的一致性。比如银行系统中,转账就是一个事务,从原账户扣除金额,以及向目标账户添加金额,这两个数据库操作的总和构成一个完整的逻辑过程,具有原子的不可拆分特性,从而保证了整个系统中的总金额没有变化。
        然而,这些ACID特性对于大型的分布式系统来说,是和高性能不兼容的。比如,你在网上书店买书,任何一个人买书这个过程都会锁住数据库直到买书行为彻底完成(否则书本库存数可能不一致),买书完成的那一瞬间,世界上所有的人都可以看到书的库存减少了一本(这也意味着两个人不能同时买书)。这在小的网上书城也许可以运行得很好,可是对Amazon这种网上书城却并不是很好。
        而对于Amazon这种系统,它也许会用Cache系统,剩余的库存数也许是几秒甚至几个小时前的快照,而不是实时的库存数,这就舍弃了一致性。并且,Amazon可能也舍弃了独立性,当只剩下最后一本书时,也许它会允许两个人同时下单,宁愿最后给那个下单成功却没货的人道歉,而不是整个系统性能的下降。
        由于CAP理论的存在,为了提高性能,出现了ACID的一种变种BASE(这四个字母分别是Basically Available,Soft—state,Eventual consistency的开头字母,是一个弱一致性的理论,只要求最终一致性):
        .Basically Available:基本可用。
        .Soft state:软状态,可以理解为“无连接”的,而与之相对应的Hard state就是“面向连接”的。
        .Eventual consistency:最终一致性,最终整个系统(时间和系统的要求有关)看到的数据是一致的。
        在BASE中,强调可用性的同时,引入了最终一致性这个概念,不像ACID,其并不需要每个事务都是一致的,只需要整个系统经过一定时间后最终达到一致。比如Amazon的卖书系统,也许在卖的过程中,每个用户看到的库存数是不一样的,但最终卖完后,库存数都为0。再比如SNS网络中,C更新状态,A也许可以1分钟就看到,而B甚至5分钟后才看到,但最终大家都可以看到这个更新。
        具体地说,如果选择了CP(一致性和分区容忍性),那么就要考虑ACID理论(传统关系型数据库的基石,事务的四个特点)。如果选择了AP(可用性和分区容忍性),那么就要考虑BASE系统。如果选择了CA(一致性和可用性),如Google的bigtable,那么在网络发生分区的时候,将不能进行完整的操作。
        ACID理论和BASE的具体对比如下表所示。
        
        ACID和BASE的对比表
 
       评审
        对设计部分是否完整地实现了需求中规定的功能、性能等要求,设计方法的可行性,关键的处理及内外部接口定义的正确性、有效性、各部分之间的一致性等都一一进行评审。


 题号导航      2021年上半年 信息系统监理师 下午试卷 案例   本试卷我的完整做题情况 
1 /
2 /
3 /
4 /
5 /
 
↓第4题