|
|
Database Technology on the Web
|
|
|
|
|
|
|
|
|
|
|
|
|
Today's DBMS technology faces yet another challenge as researchers attempt to make sense of the immense amount of heterogeneous, fast-evolving data available on the Web. The large number of cooperating databases greatly complicates autonomy and heterogeneity issues and requires a careful scalable approach. We need better models and tools for describing data semantics and specifying metadata. Techniques for automatic data and metadata extraction and classification (ontologies, for example) are crucial for building tomorrow's Semantic Web. Query languages and query processing should also be extended to exploit semantic information.
|
|
|
|
Users also need adaptive systems to help them explore the Web and discover interesting data sources and interfaces that support different query and search paradigms. Data dissemination techniques and notification services must be developed to enable effective data delivery services. Web-centric applications such as e-commerce and digital government applications pose stringent organizational, security, and performance requirements that far exceed what is now possible with traditional database techniques. Recent XML-native or extended DBMS still need to be fine-tuned and evaluated. Finally, we need new methodologies to support the design and development of data-intensive Web sites.
|
|
|
|
|
|
随着研究人员试图理解网络上大量的异构、快速演化的数据,这给今天的DBMS技术带来了另一个挑战。大量的协作式数据库使自主性与异构性问题大大复杂化了,这需要一种详细的、可扩展的方法。我们需要用更好的模型和工具来描述数据语义并规定元数据。用于自动数据和元数据抽取和分类(如本体论)的技术对建立明天的语义网络至关重要。查询语言和查询过程也应扩充到能采用语义信息。
|
|
|
|
用户也需要适应性的系统以帮助他们探索网络、发现支持不同查询和搜索范例的有趣数据源和界面。为了使数据传送服务更加有效,必须发展数据传送技术和报告服务业务。以网络为中心的应用,如电子商务和数字政府应用等,对组织、安全和性能提出了严格的要求,这些要求远远超出了目前传统数据库技术的可能性。目前本身就有XML或扩展的数据库管理系统仍需要进一步精化和评价。最后,我们需要一套新的方法来支持数据密集型网站的设计和开发。
|
|
|
|
|
|
|
|
| |
|
|
|