数据挖掘的分类
被考次数: 1次
被考频率: 低频率
答错率:    59%
知识难度:
考试要求: 掌握     
知识路径:  > 数据库技术  > 数据仓库和数据分析基础知识  > 数据挖掘


本知识点历年真题试卷分布
>> 试题列表    
 

 
       数据挖掘工具能够对将来的趋势和行为进行预测,从而很好地支持人们的决策,比如,经过对公司整个数据库系统的分析,数据挖掘工具可以回答诸如“哪个客户对我们公司的邮件推销活动最有可能做出反应,为什么”等类似的问题。有些数据挖掘工具还能够解决一些很消耗人工时间的传统问题,因为它们能够快速地浏览整个数据库,找出一些专家们不易察觉的极有用的信息。
       数据挖掘技术的分类可以有多种角度。按照所挖掘数据库的种类可分为:关系型数据库的数据挖掘、数据仓库的数据挖掘、面向对象数据库的挖掘、空间数据库的挖掘、正文数据库和多媒体数据库的数据挖掘等。按所发现的知识类别可分为:关联规则、特征描述、分类分析、聚类分析、趋势和偏差分析等。按所发现的知识抽象层次可分为:一般化知识、初级知识和多层次知识等。
       数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟。这些技术是:海量数据搜集、强大的多处理器计算机、数据挖掘算法。在数据挖掘中最常用的技术有:
       .人工神经网络:仿照生理神经网络结构的非线形预测模型,通过学习进行模式识别。
       .决策树:代表着决策集的树形结构。
       .遗传算法:基于进化理论,并采用遗传结合、遗传变异,以及自然选择等设计方法的优化技术。
       .近邻算法:将数据集合中每一个记录进行分类的方法。
       .规则推导:从统计意义上对数据中的“如果-那么”规则进行寻找和推导。
       采用上述技术的某些专门的分析工具已经发展了大约十年的历史,不过这些工具所面对的数据量通常较小。而现在这些技术已经被直接集成到许多大型的工业标准的数据仓库和联机分析系统中去了。将数据挖掘工具与传统数据分析工具进行比较(如下表所示),可以发现传统数据分析工具的分析重点在于向管理人员提供过去已经发生什么,描述过去的事实,例如,上个月的销售成本是多少;而挖掘工具则在于预测未来的情况,解释过去所发生的事实的原因,例如,下个月的市场需求情况怎样,或者某个客户为什么会转向竞争对手。分析的目的也不同,前者是为了从过去的事实中列出管理人员感兴趣的事实,例如,哪些是公司最大的客户;后者则是要找出哪些未来可能成为公司最大的客户。从两者分析时所需的数据量来看,也有明显的差异,前者需要的数据量并不很大,而后者需要海量数据才能运行。
       
       数据挖掘工具与传统数据分析工具的比较
 

更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2025 All Rights Reserved
软考在线版权所有