全部科目 > 系统分析师 >
2009年上半年 下午试卷 论文
第 2 题
知识点 企业应用集成   体系结构   总线  
 
 
论企业服务总线技术及其在应用集成中的作用
企业应用集成(Enterprise Application Integration,EAI)是企业必须要面对的实际问题,企业服务总线(Enterprise Service Bus,ESB)技术是一种基于面向服务体系结构的新型企业应用集成技术。与传统的EAI技术相比,ESB采用总线式的体系结构集成多个应用系统,基于开放标准实现其内部核心功能,并支持快速加入新的应用到已有的集成环境中。
 
问题:2.1   请围绕“企业服务总线技术及其在应用集成中的作用”论题,依次从以下三个方面进行论述。
1.概要叙述你参与实施的企业应用集成项目(包括业务背景、组织结构、现有应用系统的分布、采用的技术等)以及你所担任的主要工作。
2.论述企业服务总线的核心功能;列举目前流行的ESB产品;指出你参与的项目所选择的ESB产品,并从ESB核心功能的角度说明选择该产品的理由。
3.阐述在使用企业服务总线技术进行应用集成时遇到了哪些问题,如何解决。




 
 
 
知识点讲解
· 企业应用集成
· 体系结构
· 总线
 
        企业应用集成
        企业应用集成(Enterprise Application Integration,EAI)是伴随着企业信息系统的发展而产生和演变的。企业的价值取向是推动应用集成技术发展的原动力,而应用集成的实现反过来也驱动公司竞争优势的提升。EAI技术是将过程、软件、标准和硬件联合起来,在两个或更多的企业信息系统之间实现无缝集成,使它们就像一个整体一样。EAI一般表现为对一个商业实体(例如一家公司)的信息系统进行业务应用集成,但当遇到多个企业系统之间进行商务交易时,EAI也表现为不同公司实体之间的企业系统集成,例如B2B的电子商务。
        EAI主要包括两个方面,分别是企业内部应用集成和企业间应用集成。
               企业内的集成
               企业内的应用集成,就是要解决在企业内部业务流程和数据流量,包括业务流程是否进行自动流转,或怎样流转,以及业务过程的重要性。对于应用集成,这点非常重要,因为从本质上讲,企业应用集成就是维持数据正确而自动地流转。同时,不同的EAI解决方案采取不同的技术途径,而不同的技术途径也就决定了EAI处于不同的层次,从应用和技术上综合考虑,EAI分为界面集成、平台集成、数据集成、应用集成和过程集成。
               (1)界面集成。这是比较原始和最浅层次的集成,但又是常用的集成。这种方法就是把用户界面作为公共的集成点,把原有零散的系统界面集中在一个新的、通常是浏览器的界面之中。
               (2)平台集成。这种集成要实现系统基础的集成,使得底层的结构、软件、硬件以及异构网络的特殊需求都必须得到集成。平台集成要应用一些过程和工具,以保证这些系统进行快速安全的通信。
               (3)数据集成。为了完成应用集成和过程集成,必须首先解决数据和数据库的集成问题。在集成之前,必须首先对数据进行标识并编成目录,另外还要确定元数据模型,保证数据在数据库系统中分布和共享。
               (4)应用集成。这种集成能够为两个应用中的数据和函数提供接近实时的集成。例如,在一些B2B集成中实现CRM系统与企业后端应用和Web的集成,构建能够充分利用多个业务系统资源的电子商务网站。
               (5)过程集成。当进行过程集成时,企业必须对各种业务信息的交换进行定义、授权和管理,以便改进操作、减少成本、提高响应速度。过程集成包括业务管理、进程模拟等,还包括业务处理中每一步都需要的工具。
               企业间应用集成
               EAI技术可以适用于大多数要实施电子商务的企业,以及企业之间的应用集成。EAI使得应用集成架构里的客户和业务伙伴,都可以通过集成供应链内的所有应用和数据库实现信息共享。
               传统的电子商务应用了诸如电子数据交换和专用增值网络技术。然而今天,大多数电子商务则采用了实时性更强的、基于Internet的技术,如基于Internet的消息代理技术、应用服务器,以及像XML(eXtensible Markup Language,可扩展标记语言)等新的数据交换标准。许多公司的供应链系统也可能包括交易系统,新的EAI技术可以首先在交易双方之间创建连接,然后再共享数据和业务过程。
               集成模式
               目前市场主流的集成模式有3种,分别是面向信息的集成技术、面向过程的集成技术和面向服务的集成技术。
               在数据集成的层面上,信息集成技术仍然是必选的方法。信息集成采用的主要数据处理技术有数据复制、数据聚合和接口集成等。其中,接口集成仍然是一种主流技术。它通过一种集成代理的方式实现集成,即为应用系统创建适配器作为自己的代理,适配器通过其开放或私有接口将信息从应用系统中提取出来,并通过开放接口与外界系统实现信息交互,而假如适配器的结构支持一定的标准,则将极大的简化集成的复杂度,并有助于标准化,这也是面向接口集成方法的主要优势来源。标准化的适配器技术可以使企业从第三方供应商获取适配器,从而使集成技术简单化。
               面向过程的集成技术其实是一种过程流集成的思想,它不需要处理用户界面开发、数据库逻辑、事务逻辑等,而只是处理系统之间的过程逻辑,和核心业务逻辑相分离。在结构上,面向过程的集成方法在面向接口的集成方案之上,定义了另外的过程逻辑层;而在该结构的底层,应用服务器、消息中间件提供了支持数据传输和跨过程协调的基础服务。对于提供集成代理、消息中间件以及应用服务器的厂商来说,提供用于业务过程集成是对其产品的重要拓展,也是目前应用集成市场的重要需求。
               基于SOA(Service Oriented Architecture,面向服务架构)和Web Service(Web服务)技术的应用集成是业务集成技术上的一次重要的变化,被认为是新一代的应用集成技术。集成的对象是一个个的Web服务或者是封装成Web服务的业务处理。Web服务技术由于是基于最广为接受的、开放的技术标准(如HTTP、SMTP等),支持服务接口描述和服务处理的分离、服务描述的集中化存储和发布、服务的自动查找和动态绑定以及服务的组合,成为新一代面向服务的应用系统的构建和应用系统集成的基础设施。
 
        体系结构
        RPR的体系结构如下图所示。RPR采用了双环结构,由内层的环1和外层的环0组成,每个环都是单方向传送。相邻工作站之间的跨距包含传送方向相反的两条链路。RPR支持多达255个工作站,最大环周长为2000km。
        
        RPR体系结构
 
        总线
        所谓总线(Bus),是指计算机设备和设备之间传输信息的公共数据通道。总线是连接计算机硬件系统内多种设备的通信线路,它的一个重要特征是由总线上的所有设备共享,因此可以将计算机系统内的多种设备连接到总线上。
               总线的分类
               微机中的总线分为数据总线、地址总线和控制总线3类。不同型号的CPU芯片,其数据总线、地址总线和控制总线的条数可能不同。
               数据总线(Data Bus,DB)用来传送数据信息,是双向的。CPU既可通过DB从内存或输入设备读入数据,也可通过DB将内部数据送至内存或输出设备。DB的宽度决定了CPU和计算机其他设备之间每次交换数据的位数。
               地址总线(Address Bus,AB)用于传送CPU发出的地址信息,是单向的。传送地址信息的目的是指明与CPU交换信息的内存单元或I/O设备。存储器是按地址访问的,所以每个存储单元都有一个固定地址,要访问1MB存储器中的任一单元,需要给出220个地址,即需要20位地址(220=1M)。因此,地址总线的宽度决定了CPU的最大寻址能力。
               控制总线(Control Bus,CB)用来传送控制信号、时序信号和状态信息等。其中有的信号是CPU向内存或外部设备发出的信息,有的是内存或外部设备向CPU发出的信息。显然,CB中的每一条线的信息传送方向是单方向且确定的,但CB作为一个整体则是双向的。所以,在各种结构框图中,凡涉及控制总线CB,均是以双向线表示。
               总线的性能直接影响整机系统的性能,而且任何系统的研制和外围模块的开发都必须依从所采用的总线规范。总线技术随着微机结构的改进而不断发展与完善。
               在计算机的概念模型中,CPU通过系统总线和存储器之间直接进行通信。实际上在现代的计算机中,存在一个控制芯片的模块。CPU需要和存储器、I/O设备等进行交互,会有多种不同功能的控制芯片,称之为控制芯片组。对于目前的计算机结构来说,控制芯片集成在主板上,典型的有南北桥结构和单芯片结构。与芯片相连接的总线可以分为前端总线(FSB)、存储总线、I/O总线、扩展总线等。
                      南北桥芯片结构
                      北桥芯片直接与CPU、内存、显卡、南桥相连,控制着CPU的类型、主板的总线频率、内存控制器、显示核心等。前端总线(FSB)是将CPU连接到北桥芯片的总线。内存总线是将内存连接到北桥芯片的总线,用于和北桥之间的通信。显卡则通过I/O总线连接到北桥芯片。
                      南桥芯片主要负责外部设备接口与内部CPU的联系。其中,通过I/O总线将外部I/O设备连接到南桥,比如USB设备、ATA和SATA设备以及一些扩展接口。扩展总线则是指主板上提供的一些PCI、ISA等插槽。
                      单芯片结构
                      单芯片组方式取消了北桥。由于CPU中内置了内存控制器,不再需要通过北桥来控制,这样就能提高内存控制器的频率,减少延迟。还有一些CPU集成了显示单元,使得显示芯片的频率更高,延迟更低。
               常见总线
               常见总线包括:
               (1)ISA总线。ISA是工业标准总线,只能支持16位的I/O设备,数据传输率大约是16MB/s,也称为AT标准。
               (2)EISA总线。EISA是在ISA总线的基础上发展起来的32位总线。该总线定义32位地址线、32位数据线以及其他控制信号线、电源线、地线等共196个接点。总线传输速率达33MB/s。
               (3)PCI总线。PCI总线是目前微型机上广泛采用的内总线,采用并行传输方式。PCI总线有适于32位机的124个信号的标准和适于64位机的188个信号的标准。PCI总线的传输速率至少为133MB/s,64位PCI总线的传输速率为266MB/s。PCI总线的工作与CPU的工作是相互独立的,也就是说,PCI总线时钟与处理器时钟是独立的、非同步的。PCI总线上的设备是即插即用的。接在PCI总线上的设备均可以提出总线请求,通过PCI管理器中的仲裁机构允许该设备成为主控设备,主控设备与从属设备间可以进行点对点的数据传输。PCI总线能够对所传输的地址和数据信号进行奇偶校验检测。
               (4)PCI Express总线。PCI Express简称为PCI-E,采用点对点串行连接,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI Express的双单工连接能提供更高的传输速率和质量。
               PCI Express的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16(X2模式将用于内部接口而非插槽模式),其中X1的传输速度为250MB/s,而X16就是等于16倍于X1的速度,即是4GB/s。较短的PCI Express卡可以插入较长的PCI Express插槽中使用。PCI Express接口能够支持热拔插。同时,PCI Express总线支持双向传输模式,还可以运行全双工模式,它的双单工连接能提供更高的传输速率和质量,它们之间的差异与半双工和全双工类似。因此连接的每个装置都可以使用最大带宽。
               (5)前端总线。微机系统中,前端总线(Front Side Bus,FSB)是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者的搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作。通常情况下,一个CPU默认的前端总线是唯一的。北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并与南桥芯片连接。CPU通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片与内存、显卡交换数据。FSB是CPU和外界交换数据的最主要通道,因此FSB的数据传输能力对计算机整体性能作用很大,如果没足够快的FSB,再强的CPU也不能明显提高计算机整体速度。
               (6)RS-232C。RS-232C是一条串行外总线,其主要特点是所需传输线比较少,最少只需三条线(一条发、一条收、一条地线)即可实现全双工通信。传送距离远,用电平传送为15m,电流环传送可达千米。有多种可供选择的传送速率。采用非归零码负逻辑工作,电平≤-3V为逻辑1,而电平≥+3V为逻辑0,具有较好的抗干扰性。
               (7)SCSI总线。小型计算机系统接口(SCSI)是一条并行外总线,广泛用于连接软硬磁盘、光盘、扫描仪等。其中,SCSI-1是第一个SCSI标准,传输速率为5MB/s;Ultra2 SCSI的传输速率为80MB/s;Ultra160 SCSI也称Ultra3 SCSI LVD,传输速率为160MB/s;Ultra320 SCSI也称Ultra4 SCSI LVD,传输速率可高达320MB/s。
               (8)SATA。SATA是Serial ATA的缩写,即串行ATA。它主要用作主板和大量存储设备(如硬盘及光盘驱动器)之间的数据传输。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
               (9)USB。通用串行总线(USB)当前风头正劲,目前得到十分广泛的应用。USB由4条信号线组成,其中两条用于传送数据,另外两条传送+5V容量为500mA的电源。可以经过集线器(Hub)进行树状连接,最多可达5层。该总线上可接127个设备。USB 1.0有两种传送速率:低速为1.5Mb/s,高速为12Mb/s。USB 2.0的传送速率为480Mb/s。USB 3.0的传送速率为5Gb/s。USB总线最大的优点还在于它支持即插即用,并支持热插拔。
               (10)IEEE-1394。IEEE-1394是高速串行外总线,近几年得到广泛应用。IEEE-1394也支持外设热插拔,可为外设提供电源,省去了外设自带的电源,能连接多个不同设备,支持同步和异步数据传输。IEEE-1394由6条信号线组成,其中两条用于传送数据,两条传送控制信号,另外两条传送8~40V容量为1500mA的电源,IEEE-1394总线理论上可接63个设备。IEEE-1394的传送速率从400Mb/s、800Mb/s、1600Mb/s直到3.2Gb/s。
               (11)IEEE-488总线。IEEE-488是并行总线接口标准。微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488总线连接装配,它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备不需中介单元直接并联于总线上。总线上最多可连接15台设备。最大传输距离为20m,信号传输速率一般为500KB/s,最大传输速率为1MB/s。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2025 All Rights Reserved
软考在线版权所有