全部科目 > 网络规划设计师 >
2012年下半年 上午试卷 综合知识
第 63 题
知识点 无线接入点   WLAN   信号  
关键词 WLAN   信号   需求  
章/节 网络设备与网络软件   局域网  
 
 
某大学WLAN无线校园网已经全面覆盖了校园,AP数量、信号强度等满足覆盖需求。学校无线用户要求接入某运营商的WLAN,针对现状可采用的最优化技术方案是(63)。
 
  A.  运营商新建自己的WLAN无线网络
 
  B.  运营商利用学校现有无线网络,在AP上增加一个自己的SSID
 
  C.  运营商利用以前部署的手机基站进行建设覆盖
 
  D.  增强AP功率




 
 
相关试题     网络设备与网络软件 

  第57题    2021年下半年  
下列路由表的概要信息中,迭代路由是(57),不同的静态路由有(58)条。


  第34题    2023年下半年  
下列命令片段用于配置( )功能。

  第49题    2018年下半年  
在Windows Server 2008系统中,某共享文件夹的NTFS权限和共享文件权限设置的不一致,则对于访问该文件夹的用户而言,下列()有效。

相关试题     局域网 

  第32题    2011年下半年  
在以太网半双工共享式连接中,我们无需流量控制;而在全双工交换式连接中要考虑流量控制,其原因是(32)。

  第55题    2021年下半年  
在无线网络中,通过射频资源管理可以配置的任务不包括( )。

  第10题    2025年下半年  
在无线网络中,通过射频资源管理可以配置的任务不包括( )。

 
知识点讲解
· 无线接入点
· WLAN
· 信号
 
        无线接入点
        无线接入点(Access Point,AP)又称为无线访问点、会话点或存取桥接器。它是一个包含很广的名称,分为单纯性无线接入点、多数单纯性无线接入点、扩展型无线接入点。
        单纯性无线AP就是一个无线的交换机,提供无线信号发射接受的功能。它主要是提供无线工作站对有线局域网和从有线局域网对无线工作站的访问,在访问接入点覆盖范围内的无线工作站可以通过它进行相互通信。
        多数单纯性无线AP本身不具备路由功能,包括DNS、DHCP、防火墙在内的服务器功能都必须有独立的路由或是计算机来完成。目前大多数的无线AP都支持多用户(30~100台计算机)接入,数据加密,多速率发送等功能。在家庭、办公室内,一个无线AP便可实现所有计算机的无线接入。
        扩展型无线接入点即通常所说的无线路由器。
 
        WLAN
        WLAN(Wireless Local Area Network)是利用无线通信技术在一定的局部范围内建立的,是计算机网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,提供传统有线局域网的功能。WLAN的覆盖范围一般在100m以内,通过桥接可以达到更大的覆盖范围。传输介质为红外线IR或射频RF波段,以后者使用居多。
        由于WLAN是基于计算机网络与无线通信技术的,在计算机网络结构中,逻辑链路控制(Logic Link Contros,LLC)层及其之上的应用层对不同物理层的要求可以是相同的,也可以是不同的,因此,WLAN标准主要是针对物理层和媒质访问控制层(Media Access Control,MAC),涉及到所使用的无线频率范围、空中接口通信协议等技术规范与技术标准。
        (1)IEEE 802.11。1990年IEEE 802标准化委员会成立IEEE 802.11WLAN标准工作组。IEEE 802.11(又称Wi-Fi,Wireless Fidelity,无线保真)是在1997年6月由大量的局域网及计算机专家审定通过的标准,该标准定义了物理层和媒体访问控制(MAC)规范。物理层定义了数据传输的信号特征和调制,定义了两个RF传输方法和一个红外线传输方法,RF传输标准是跳频扩频和直接序列扩频,工作在2.4000~2.4835GHz频段。
        (2)IEEE 802.11b。1999年9月IEEE 802.11b被正式批准,该标准规定WLAN工作频段在2.4~2.4835GHz,数据传输速率达到11Mb/s,传输距离控制在50~150英寸。该标准是对IEEE 802.11的一个补充,采用补偿编码键控调制方式,采用点对点模式和基本模式两种运行模式。在数据传输速率方面可以根据实际情况在11Mb/s、5.5Mb/s、2Mb/s、1Mb/s的不同速率间自动切换,它改变了WLAN设计状况,扩大了WLAN的应用领域。
        (3)IEEE 802.11a。1999年,IEEE 802.11a标准制定完成,该标准规定WLAN工作频段在5.15~8.825GHz,数据传输速率达到54Mb/s或72Mb/s(Turbo),传输距离控制在10~100m。该标准也是IEEE 802.11的一个补充,扩充了标准的物理层,采用正交频分复用(Orthogonal Frequency Division Modulation,OFDM)的独特扩频技术,可提供25Mb/s的无线ATM接口和10Mb/s的以太网无线帧结构接口,支持多种业务,如话音、数据和图像等,一个扇区可以接入多个用户,每个用户可带多个用户终端。
        (4)IEEE 802.11g。目前,IEEE推出了最新版本IEEE 802.11g认证标准,该标准提出拥有IEEE 802.11a的传输速率,安全性较IEEE 802.11b好,采用两种调制方式,含IEEE 802.11a中采用的OFDM与IEEE 802.11b中采用的CCK,做到与IEEE 802.11a和IEEE 802.11b兼容。
 
        信号
        任务间同步的另一种方式是异步信号。在两个任务之间,可以通过相互发送信号的方式,来协调它们之间的运行步调。
        所谓的信号,指的是系统给任务的一个指示,表明某个异步事件已经发生了。该事件可能来自于外部(如其他的任务、硬件或定时器),也可能来自于内部(如执行指令出错)。异步信号管理允许任务定义一个异步信号服务例程ASR(Asynchronous Signal Routine),与中断服务程序不同的是,ASR是与特定的任务相对应的。当一个任务正在运行的时候,如果它收到了一个信号,将暂停执行当前的指令,转而切换到相应的信号服务例程去运行。不过这种切换不是任务之间的切换,因为信号服务例程通常还是在当前任务的上下文环境中运行的。
        信号机制与中断处理机制非常相似,但又各有不同。它们的相同点是:
        .都具有中断性:在处理中断和异步信号时,都要暂时地中断当前任务的运行;
        .都有相应的服务程序;
        .都可以屏蔽响应:外部硬件中断可以通过相应的寄存器操作来屏蔽,任务也能够选择不对异步信号进行响应。
        信号机制与中断机制的不同点是:
        .中断是由硬件或特定的指令产生,而信号是由系统调用产生;
        .中断触发后,硬件会根据中断向量找到相应的处理程序去执行;而信号则通过发送信号的系统调用来触发,但系统不一定马上对它进行处理;
        .中断处理程序是在系统内核的上下文中运行,是全局的;而信号处理程序是在相关任务的上下文中运行,是任务的一个组成部分。
        实时系统中不同的任务经常需要互斥地访问共享资源。当任务试图访问资源时被正使用该资源的其他任务阻塞,可能出现优先级反转的现象,即当高优先级任务企图访问已被某低优先级任务占有的共享资源时,高优先级任务必须等待直到低优先级任务释放它占有的资源。如果该低优先级任务又被一个或多个中等优先级任务阻塞,问题就更加严重。由于低优先级任务得不到执行就不能访问资源、释放资源。于是低优先级任务就以一个不确定的时间阻塞高优先级的任务,导致系统的实时性没有保障。下图为是一个优先级反转的示例。
        
        一个优先级反转的示例
        如上图所示,系统存在任务1、任务2、任务3(优先级从高到低排列)和资源R。某时,任务1和任务2都被阻塞,任务3运行且占用资源R。一段时间后,任务1和任务2相继就绪,任务1抢占任务3运行,由于申请资源R失败任务1被挂起。由于任务2的优先级高于任务3,任务2运行。由于任务3不能运行和释放资源R,因此任务1一直被阻塞。极端情况下,任务1永远无法运行,处于饿死状态。
        解决优先级反转问题的常用算法有优先级继承和优先级天花板。
               优先级继承协议
               L. Sha、R. Rajkumar和J. P. Lehoczky针对资源访问控制提出了优先级继承协议(Priority Inheritance Protocol,PIP)。
               PIP协议能与任何优先级驱动的抢占式调度算法配合使用,而且不需要有关任务访问资源情况的先验知识。优先级继承协议的执行方式是:当低优先级任务正在使用资源,高优先级任务抢占执行后也要访问该资源时,低优先级任务将提升自身的优先级到高优先级任务的级别,保证低优先级任务继续使用当前资源,以尽快完成访问,尽快释放占用的资源。这样就使高优先级任务得以执行,从而减少高优先级任务被多个低优先级任务阻塞的时间。低优先级任务在运行中,继承了高优先级任务的优先级,所以该协议被称作优先级继承协议。
               由于只有高优先级任务访问正被低优先级任务使用的资源时,优先级继承才会发生,在此之前,高优先级任务能够抢占低优先级任务并执行,所以优先级继承协议不能防止死锁,而且阻塞是可以传递的,会形成链式阻塞。另外,优先级继承协议不能将任务所经历的阻塞时间减少到尽可能小的某个范围内。最坏情况下,一个需要μ个资源,并且与v个低优先级任务冲突的任务可能被阻塞min(μ,v)次。
               优先级冲顶协议
               J. B. Goodenough和L. Sha针对资源访问控制提出了优先级冲顶协议(Priority Ceiling Protocol,PCP)。
               PCP协议扩展了PIP协议,能防止死锁和减少高优先级任务经历的阻塞时间。该协议假设所有任务分配的优先级都是固定的,每个任务需要的资源在执行前就已确定。每个资源都具有优先级冲顶值,等于所有访问该资源的任务中具有的最高优先级。任一时刻,当前系统冲顶值(current priority ceiling)等于所有正被使用资源具有的最高冲顶值。如果当前没有资源被访问,则当前系统冲顶值等于一个不存在的最小优先级。当任务试图访问一个资源时,只有其优先级高于当前系统冲顶值,或其未释放资源的冲顶值等于当前系统冲顶值才能获得资源,否则会被阻塞。而造成阻塞的低优先级任务将继承该高优先级任务的优先级。
               已经证明,PCP协议的执行规则能防止死锁,但其代价是高优先级任务可能会经历优先级冲顶阻塞(Priority ceiling blocking)。即高优先级任务可能被一个正使用某资源的低优先级任务阻塞,而该资源并不是高优先级任务请求的。这种阻塞又被称作回避阻塞(avoidance blocking),意思是因为回避死锁而引起的阻塞。即使如此,在PCP协议下,每个高优先级任务至多被低优先级任务阻塞一次。使用PCP协议后,能静态分析和确定任务之间的资源竞争,计算出任务可能经历的最大阻塞时间,从而能分析任务集合的可调度性。在PCP协议下,高优先级任务被阻塞时会放弃处理器,因此,访问共享资源的任务可能会产生4次现场切换。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2025 All Rights Reserved
软考在线版权所有