全部科目 > 网络规划设计师 >
2023年下半年 下午试卷 论文
第 1 题
知识点 SD   抽象   基础设施   网络设备   物联网   虚拟化技术   业务需求   云计算  
 
 
论虚拟化网络架构的规划与建设
随着信息技术的发展,网络以及软件厂商的产品、企业网络的规划按照NaaS模型进行演进已经成为一种共识。在Naas的理念下,企业的I专业人员将能够从选项菜单中订购网络基础设施组件,根据业务需求进行设计,并在短时间内交付和运行整个网络。为实现这样的规划,需要将网络结构从物理网络设备抽象(或分离)出来,从而实现网络虚拟化。而实现网络虚拟化的技术主要有软件定义网络(SDN)和网络功能虚拟化(NFV)网络虚拟化技术将物理资源转化为罗辑资源,使得网络资源的分配与管理更加灵活、高效,极大地促进了云计算物联网等相关产业的发展。
 
问题:1.1   请围绕“论虚拟化网络架构的规划与建设”论题,从以下几个方面进行论述。
1.简要论述网络虚拟化在网络改造和业务融合的总体架构。
2.请结合你自身参与规划、设计和实施的虚拟化网络项目,详细论述网络虚拟化某个具体应用场景(如区网、数据中心等)规划与建设的方案。包含网络的规划设计、采用的虚拟化技术、网络安全策略、软硬件选型、项目实施效果等。
3.对项目实施过程中出现的问题、解决方案、以及对原有网络优化后产生的效益进行论述。




 
 
 
知识点讲解
· SD
· 抽象
· 基础设施
· 网络设备
· 物联网
· 虚拟化技术
· 业务需求
· 云计算
 
        SD
        SD卡(Secure Digital Memory Card)是一种基于半导体快闪记忆器的新一代记忆设备。SD卡由日本松下、东芝及美国SanDisk公司于1999年8月共同开发研制。大小犹如一张邮票的SD记忆卡,重量只有2g,但却拥有高记忆容量、快速数据传输率、极大的移动灵活性以及很好的安全性。
        SD卡在24mm×32mm×2.1mm的体积内结合了SanDisk快闪记忆卡控制与MLC(Multilevel Cell)技术和Toshiba(东芝)0.16μ及0.13μ的NAND技术,通过9针的接口界面与专门的驱动器相连接,不需要额外的电源来保持其上记忆的信息。而且它是一体化固体介质,没有任何移动部分,所以不用担心机械运动的损坏。
 
        抽象
        抽象是一种设计技术,重点说明一个实体的本质方面,而忽略或者掩盖不很重要或非本质的方面。抽象是一种重要的工具,用来将复杂的现象简化到可以分析、实验或者可以理解的程度。软件工程中从软件定义到软件开发要经历多个阶段,在这个过程中每前进一步都可看作是对软件解法的抽象层次的一次细化。抽象的最低层就是实现该软件的源程序代码。在进行模块化设计时也可以有多个抽象层次,最高抽象层次的模块用概括的方式叙述问题的解法,较低抽象层次的模块是对较高抽象层次模块对问题解法描述的细化。
 
        基础设施
        基础设施是指包括机房供配电系统、机房UPS系统、机房空调系统、机房弱电系统、机房消防系统等在内的,维持机房安全正常运转,确保机房环境满足信息系统设备运行要求的各类设施。
 
        网络设备
        网络互联的目的是使一个网络的用户能访问其他网络的资源,使不同网络上的用户能够互相通信和交换信息,实现更大范围的资源共享。在网络互联时,一般不能简单地直接相连,而是通过一个中间设备来实现。按照ISO/OSI的分层原则,这个中间设备要实现不同网络之间的协议转换功能,根据它们工作的协议层不同进行分类。网络互联设备可以有中继器(实现物理层协议转换,在电缆间转发二进制信号)、网桥(实现物理层和数据链路层协议转换)、路由器(实现网络层和以下各层协议转换)、网关(提供从最低层到传输层或以上各层的协议转换)和交换机等。
               网络传输介质互联设备
               网络线路与用户节点具体衔接时,需要网络传输介质的互联设备。如T型头(细同轴电缆连接器)、收发器、RJ-45(屏蔽或非屏蔽双绞线连接器)、RS232接口(目前计算机与线路接口的常用方式)、DB-15接口(连接网络接口卡的AUI接口)、VB35同步接口(连接远程的高速同步接口)、网络接口单元和调制解调器(数字信号与模拟信号转换器)等。
               物理层的互联设备
               物理层的互联设备有中继器(Repeater)和集线器(Hub)。
                      中继器
                      它是在物理层上实现局域网网段互联的,用于扩展局域网网段的长度。由于中继器只在两个局域网网段间实现电气信号的恢复与整形,因此它仅用于连接相同的局域段。
                      理论上说,可以用中继器把网络延长到任意长的传输距离,但是,局域网中接入的中继器的数量将受时延和衰耗的影响,因而必须加以限制。例如,在以太网中最多使用4个中继器。以太网设计连线时指定两个最远用户之间的距离,包括用于局域网的连接电缆,不得超过500m。即便使用了中继器,典型的Ethernet局域网应用要求从头到尾整个路径不超过1500m。中继器的主要优点是安装简便、使用方便、价格便宜。
                      集线器
                      可以看成是一种特殊的多路中继器,也具有信号放大功能。使用双绞线的以太网多用Hub扩大网络,同时也便于网络的维护。以集线器为中心的网络优点是当网络系统中某条线路或某节点出现故障时,不会影响网上其他节点的正常工作。集线器可分为无源(passive)集线器、有源(active)集线器和智能(intelligent)集线器。
                      无源集线器只负责把多段介质连接在一起,不对信号做任何处理,每一种介质段只允许扩展到最大有效距离的一半;有源集线器类似于无源集线器,但它具有对传输信号进行再生和放大从而扩展介质长度的功能;智能集线器除具有有源集线器的功能外,还可将网络的部分功能集成到集线器中,如网络管理、选择网络传输线路等。
               数据链路层的互联设备
               数据链路层的互联设备有网桥(Bridge)和交换机(Switch)。
                      网桥
                      用于连接两个局域网网段,工作于数据链路层。网桥要分析帧地址字段,以决定是否把收到的帧转发到另一个网络段上。确切地说,网桥工作于MAC子层,只要两个网络MAC子层以上的协议相同,都可以用网桥互联。
                      网桥检查帧的源地址和目的地址,如果目的地址和源地址不在同一个网络段上,就把帧转发到另一个网络段上;若两个地址在同一个网络段上,则不转发,所以网桥能起到过滤帧的作用。网桥的帧过滤特性很有用,当一个网络由于负载很重而性能下降时,可以用网桥把它分成两个网络段并使得段间的通信量保持最小。例如,把分布在两层楼上的网络分成每层一个网络段,段中间用网桥相连,这样的配置可以最大限度地缓解网络通信繁忙的程度,提高通信效率。同时,由于网桥的隔离作用,一个网络段上的故障不会影响到另一个网络段,从而提高了网络的可靠性。
                      交换机
                      交换机是一个具有简化、低价、高性能和高端口密集特点的交换产品,它是按每一个包中的MAC地址相对简单地决策信息转发,而这种转发决策一般不考虑包中隐藏的更深的其他信息。交换机转发数据的延迟很小,操作接近单个局域网性能,远远超过了普通桥接的转发性能。交换技术允许共享型和专用型的局域网段进行带宽调整,以减轻局域网之间信息流通出现的瓶颈问题。
                      交换机的工作过程为:当交换机从某一节点收到一个以太网帧后,将立即在其内存中的地址表(端口号一MAC地址)进行查找,以确认该目的MAC的网卡连接在哪一个节点上,然后将该帧转发至该节点。如果在地址表中没有找到该MAC地址,也就是说,该目的MAC地址是首次出现,交换机就将数据包广播到所有节点。拥有该MAC地址的网卡在接收到该广播帧后,将立即做出应答,从而使交换机将其节点的“MAC地址”添加到MAC地址表中。
                      交换机的三种交换技术:端口交换、帧交换和信元交换。
                      (1)端口交换技术用于将以太模块的端口在背板的多个网段之间进行分配、平衡。
                      (2)帧交换技术对网络帧的处理方式分为直通交换和存储转发。其中,直通交换方式可提供线速处理能力,交换机只读出网络帧的前14个字节,便将网络帧传送到相应的端口上;存储转发方式通过对网络帧的读取进行验错和控制。
                      (3)信元交换技术采用长度(53个字节)固定的信元交换,由于长度固定,因而便于用硬件实现。
               网络层互联设备
               路由器(Router)是网络层互联设备,用于连接多个逻辑上分开的网络。逻辑网络是指一个单独的网络或一个子网,当数据从一个子网传输到另一个子网时,可通过路由器来完成。
               路由器具有很强的异种网互联能力,互联的网络最低两层协议可以互不相同,通过驱动软件接口到第三层上而得到统一。对于互联网络的第三层协议,如果相同,可使用单协议路由器进行互联;如果不同,则应使用多协议路由器。多协议路由器同时支持多种不同的网络层协议,并可以设置为允许或禁止某些特定的协议。所谓支持多种协议,是指支持多种协议的路由,而不是指不同类协议的相互转换。
               通常把网络层地址信息叫作网络逻辑地址,把数据链路层地址信息叫作物理地址。路由器最主要的功能是选择路径。在路由器的存储器中维护着一个路径表,记录各个网络的逻辑地址,用于识别其他网络。在互联网络中,当路由器收到从一个网络向另一个网络发送的信息包时,将丢弃信息包的外层,解读信息包中的数据,获得目的网络的逻辑地址,使用复杂的程序来决定信息经由哪条路径发送最合适,然后重新打包并转发出去。路由器的功能还包括过滤、存储转发、流量管理和介质转换等。一些增强功能的路由器还可有加密、数据压缩、优先和容错管理等功能。由于路由器工作于网络层,它处理的信息量比网桥要多,因而处理速度比网桥慢。
               应用层互联设备
               网关(Gateway)是应用层的互联设备。在一个计算机网络中,当连接不同类型而协议差别又较大的网络时,则要选用网关设备。网关的功能体现在OSI模型的最高层,它将协议进行转换,将数据重新分组,以便在两个不同类型的网络系统之间进行通信。由于协议转换是一件复杂的事,一般来说,网关只进行一对一转换,或是少数几种特定应用协议的转换,网关很难实现通用的协议转换。
 
        物联网
               物联网概念及关键技术
               (1)物联网概念。物联网(IoT: Internet of Things)即“物物相联之网”,指通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把物与物、人与物进行智能化连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种新兴网络。从计算机的协同处理来划分,可分为独立计算、互联网和物联网时代,如下图所示。
               
               物联网时代的划分图
               物联网不是一种物理上独立存在的完整网络,而是架构在现有互联网或下一代公网或专网基础上的联网应用和通信能力,是具有整合感知识别、传输互联和计算处理等能力的智能型应用。
               物联网概念的3个方面:
               .物:客观世界的物品,主要包括人、商品、地理环境等。
               .联:通过互联网、通信网、电视网以及传感网等实现网络互联。
               .网:首先,应和通信介质无关,有线无线都可。其次,应和通信拓扑结构无关,总线、星型均可。最后,只要能达到数据传输的目的即可。
               (2)物联网架构。物联网从架构上面可以分为感知层、网络层和应用层,如下图所示。
               
               物联网架构
               感知层:负责信息采集和物物之间的信息传输,信息采集的技术包括传感器、条码和二维码、RFID射频技术、音视频等多媒体信息,信息传输包括远近距离数据传输技术、自组织组网技术、协同信息处理技术、信息采集中间件技术等传感器网络。是实现物联网全面感知的核心能力,是物联网中包括关键技术、标准化方面、产业化方面亟待突破的部分,关键在于具备更精确、更全面的感知能力,并解决低功耗、小型化和低成本的问题。
               网络层:是利用无线和有线网络对采集的数据进行编码、认证和传输,广泛覆盖的移动通信网络是实现物联网的基础设施,是物联网三层中标准化程度最高、产业化能力最强、最成熟的部分,关键在于为物联网应用特征进行优化和改进,形成协同感知的网络。
               应用层:提供丰富的基于物联网的应用,是物联网发展的根本目标,将物联网技术与行业信息化需求相结合,实现广泛智能化应用的解决方案集,关键在于行业融合、信息资源的开发利用、低成本高质量的解决方案、信息安全的保障以及有效的商业模式的开发。
               各个层次所用的公共技术包括编码技术、标识技术、解析技术、安全技术和中间件技术。
               (3)物联网关键技术。感知层作为物联网架构的基础层面,主要是达到信息采集并将采集到的数据上传的目的,感知层主要包括:自动识别技术产品和传感器(条码、RFID、传感器等),无线传输技术(WLAN、Bluetooth、ZigBee、UWB),自组织组网技术和中间件技术,如下图所示。
               
               物联网关键技术设备
               物联网应用
               物联网的产业链(如下图所示)包括传感器和芯片、设备、网络运营及服务、软件与应用开发和系统集成。作为物联网“金字塔”的塔座,传感器将是整个链条需求总量最大和最基础的环节。将整体产业链按价值分类,硬件厂商的价值较小,占产业价值大头的公司通常都集多种角色为一体,以系统集成商的角色出现。
               
               物联网产业链
               (1)智能微尘:智能微尘(smart dust)(2001,美国国防部计划)是指具有电脑功能的一种超微型传感器,它可以探测周围诸多环境参数,能够收集大量数据,进行适当计算处理,然后利用双向无线通信装置将这些信息在相距1000英尺的微尘器件间往来传送。智能微尘的应用范围很广,除了主要应用于军事领域外,还可用于健康监控、环境监控、医疗等许多方面。
               (2)智能电网:物联网技术在传感技术、电网通信整合、安全技术和先进控制方法等关键技术领域助力美国新一代智能电网的建设,使配电系统进入计算机智能化控制的时代,以美国的可再生能源为基础,实现美国发电、输电、配电和用电体系的优化管理。
               (3)智慧物流:大型零售企业沃尔玛,拥有全美最大的送货车队,车辆全部安装了综合了GPS卫星定位、移动通信网络等功能的车载终端,调度中心可实时掌握车辆及货物的情况高效利用物流资源设施,使沃尔玛的配送成本仅占销售额的2%,远低于同行高达10%甚至20%的物流成本。提高物流效率,实现物流的全供应链流程管理支持。
               (4)智能家居:提供基于网络的通信,进行家居和建筑的自动化控制和外部共享信息,应用包括家庭安防类、信息服务类和家电设备管理等应用。
               (5)智能交通:瑞典在解决交通拥挤问题时,通过使用RFID技术、激光扫描、自动拍照和自由车流路边系统,自动检测标识车辆,向工作进出市中心的车辆收取费用。提供汽车信息服务,支持交通管理,车辆控制和安全系统,公共交通管理,商用车运营管理,交通应急管理以及出行和交通需求管理等领域。
               (6)智慧农业:荷兰阿姆斯特丹对城市建筑有另一个层面的应用,即利用城市内废弃建筑的多层结构提高种植面积,并利用物联网的感知与智能技术就地改造建筑内的LED照明设备与供水排水管道,形成自动根据天气条件补充光照与水分的城市农业。整合新型传感器技术,全流程的牧业管理和支持精细农业,应用涉及食品安全溯源,环境检测等应用。
               (7)环境保护:环境监测、河流区域监控、森林防火、动物监测等应用。
               (8)医疗健康:基于RFID技术的医疗健康服务管理,应用涉及医疗健康服务管理,药品和医疗器械管理以及生物制品管理等应用。
               (9)城市管理:应用物联网支撑城市综合管理,实现智慧城市。
               (10)金融服务保险业:依靠物联网支撑金融和保险行业体系,实现便捷和健壮的服务,应用涉及安全监控,手机钱包等。
               (11)公共安全:主要应用于机场防入侵,安全防范,城市轨道防控,城市公共安全等方面。
 
        虚拟化技术
        虚拟化或虚拟技术(Virtualization)是一种资源管理技术,是将计算机的各种实体资源(CPU、内存、磁盘空间、网络适配器等)予以抽象、转换后呈现出来,并可供分割、组合为一个或多个电脑配置环境。云计算中的虚拟化往往指的是系统虚拟化。
        系统虚拟化是指将一台物理计算机系统虚拟化为一台或多台虚拟计算机系统。每个虚拟计算机系统(简称虚拟机)都拥有自己的虚拟硬件(如CPU、内存和设备等),来提供一个独立的虚拟机执行环境,被称为虚拟机监控器(Virtual Machine Monitor,VMM)。虚拟机基本结构如下图所示。
        
        虚拟机结构示意图
        当前主流的虚拟化技术实现结构可以分为三类:Hypervisor模型、宿主模型和混合模型。在Hypervisor模型中,VMM可以看作是一个扩充了虚拟化功能的操作系统,对底层硬件提供物理资源的管理功能,对上层的客户机操作系统提供虚拟环境的创建和管理功能。宿主模型中,VMM作为宿主操作系统独立的内核模块。物理资源由宿主机操作系统管理,VMM提供虚拟化管理。宿主模型和Hypervisor模型的优缺点恰好相反。宿主模型的最大优点是可以充分利用现有操作系统的设备驱动程序以及其他功能,缺点是虚拟化效率较低,安全性取决于宿主操作系统。而Hypervisor模型虚拟化效率高、安全,但是需要自行开发设备驱动和其他一些功能。混合模型集成了上述两类模型的优点。混合模型中,VMM让出大部分I/O设备的控制权,将它们交由一个运行在特权虚拟机中的特权操作系统来控制。因此,混合模型下CPU和内存的虚拟化由VMM负责,而I/O虚拟化由VMM和特权操作系统共同合作完成。
 
        业务需求
        网络系统是为一个集体提供服务的,对于该集体内的不同用户,需要收集特定的业务信息,包括以下内容。
        (1)确定结构组织。业务需求的第一步就是获取组织结构图,了解集体中的岗位设置及岗位职责。
        (2)确定关键时间点。对于大型项目,必须制订严格的项目实施计划,确定各个阶段关键的时间点。
        (3)确定网络投资规模。在整个网络的设计和实施中,费用是一个主要考虑的因素。
        (4)确定业务活动。主要通过对业务的分析,形成各类业务的网络需求,主要包括最大用户数、并发用户数、峰值带宽和正常带宽等。
        (5)预测增长率。通过对网络发展趋势的分析,明确网络的伸缩性需求。
        (6)确定网络的可靠性和可用性。网络设计人员在进行需求分析的过程中,首先应获取行业的网络可靠性和可用性标准,并根据标准与用户进行交流,确定特殊的要求。
        (7)确定Web站点和Internet连接。
        (8)确定网络的安全性。
        (9)确定远程接入方式。
 
        云计算
               云计算相关概念
                      云计算基本概念
                      云计算(Cloud Computing)是一种通过网络统一组织和灵活调用各种ICT信息资源,实现大规模计算的信息处理方式。云计算利用分布式计算和虚拟资源管理等技术,通过网络将分散的ICT资源(包括计算与存储、应用运行平台、软件等)集中起来形成共享的资源池,并以动态按需和可度量的方式向用户提供服务。用户可以使用各种形式的终端(如PC、平板电脑、智能手机甚至智能电视等)通过网络获取ICT资源服务。
                      “云”是对云计算服务模式和技术实现的形象比喻。“云”由大量组成“云”的基础单元(云元,Cloud unit)组成。“云”的基础单元之间由网络相连,汇聚为庞大的资源池。
                      云计算核心特征
                      云计算具备四个方面的核心特征:
                      (1)宽带网络连接,“云”不在用户本地,用户要通过宽带网络接入“云”中并使用服务,“云”内节点之间也通过内部的高速网络相连;
                      (2)对ICT资源的共享,“云”内的ICT资源并不为某一用户所专有;
                      (3)快速、按需、弹性的服务,用户可以按照实际需求迅速获取或释放资源,并可以根据需求对资源进行动态扩展;
                      (4)服务可测量,服务提供者按照用户对资源的使用量进行计费。
                      云计算服务
                      自20世纪90年代末出现以来,云计算服务已经经历了十多年的发展历程。云计算服务真正受到整个IT产业的重视是始于2005年亚马逊推出的AWS服务,产业界认识到亚马逊建立了一种新的IT服务模式。在此之后,谷歌、IBM、微软等互联网和IT企业分别从不同的角度开始提供不同层面的云计算服务。云服务正在逐步突破互联网市场的范畴,政府、公共管理部门、各行业企业也开始接受云服务的理念,并开始将传统的自建IT方式转为使用公共云服务方式。
                      按照云计算服务提供的资源所在的层次,可以分为IaaS(基础设施即服务)、PaaS(平台即服务)和SaaS(软件即服务)。
                      IaaS是基础设施类的服务,将成为未来互联网和信息产业发展的重要基石。互联网乃至其他云计算服务的部署和应用将会带来对IaaS需求的增长,进而促进IaaS的发展;同时,大数据对海量数据存储和计算的需求,也会带动IaaS的迅速发展。IaaS也是一种“重资产”的服务模式,需要较大的基础设施投入和长期运营经验的积累,单纯出租资源的IaaS服务盈利能力比较有限。
                      PaaS服务被誉为未来互联网的“操作系统”,也是当前云计算技术和应用创新最活跃的领域,与IaaS服务相比,PaaS服务对应用开发者来说将形成更强的业务粘性,因此PaaS服务的重点并不在于直接的经济效益,而更着重于构建和形成紧密的产业生态。
                      SaaS服务是发展最为成熟的一类云服务。传统软件产业以售卖拷贝为主要商业模式,SaaS服务采用Web技术和SOA架构,通过互联网向用户提供多租户、可定制的应用能力,大大缩短了软件产业的渠道链条,使软件提供商从软件产品的生产者转变为应用服务的运营者。
               云计算技术
                      云计算技术架构
                      在云计算技术架构中,由数据中心基础设施层与ICT资源层组成的云计算“基础设施”和由资源控制层功能构成的云计算“操作系统”,是云计算相关技术的核心和发展重点,如下图所示。
                      
                      云计算技术架构
                      云计算“基础设施”是承载在数据中心之上的,以高速网络(如以太网)连接各种物理资源(服务器、存储设备、网络设备等)和虚拟资源(虚拟机、虚拟存储空间等)。云计算基础设施的主要构成元素基本上都不是云计算所特有的,但云计算的特殊需求为这些传统的ICT设施、产品和技术带来了新的发展机遇。如数据中心的高密度、绿色化和模块化,服务器的定制化、节能化和虚拟化等;而且一些新的ICT产品形式将得到长足的发展,并可能形成新的技术创新点和产业增长点,如定制服务器、模块化数据中心等。
                      云计算“操作系统”是对ICT资源池中的资源进行调度和分配的软件系统。云计算“操作系统”的主要目标是对云计算“基础设施”中的资源(计算、存储和网络等)进行统一管理,构建具备高度可扩展性,并能够自由分割的ICT资源池;同时向云计算服务层提供各种粒度的计算、存储等能力。
                      云计算关键技术
                             “基础设施”关键技术
                             云计算“基础设施”关键技术包括服务器、网络和数据中心相关技术。
                             (1)服务器相关技术。服务器是云计算系统中的基础节点。为了实现云计算的低成本目标,云计算系统中多采用X86服务器,并通过虚拟化提高对服务器资源的利用率。
                             X86服务器的虚拟化技术比较成熟。虚拟化主要有裸金属虚拟化和寄居虚拟化两种方式,其中裸金属虚拟化在性能、资源占用等方面具有综合优势,是应用最为广泛的一种虚拟化方式。
                             (2)云计算相关网络技术。云可以看作是一个庞大的网络系统。一个云内可以包含数千,甚至上万台服务器,虚拟化技术的普遍采用使实际网络节点的数量更加巨大,因此用于连接云内各个节点(云元)的网络就成为实现高效的计算和存储能力的关键环节之一。
                             云计算相关网络技术主要解决以下三个问题:
                             ①虚拟机流量的接入与控制。由于虚拟机的引入,虚拟机间流量的交换可能深入到网卡内部进行,使得原本服务器与网络设备之间在网络接入层比较清晰的界限被打破。
                             ②数据中心内部横向流量的承载。在云计算数据中心中,出于对虚拟机“热迁移”的需要,汇聚层仍然采用二层网络组网,这使得汇聚层二层网络规模大大增加,原有生成树协议的阻塞模式将造成链路的大量浪费。
                             ③数据、存储网络的融合。传统数据中心中存在两类网络:连接服务器的以太网,连接服务器和存储设备的光纤存储网(FC)。两张网络的并存提高了建设和运行管理成本,为了适应云计算低成本的需要,数据网络和存储网络的融合成为一种趋势。
                             (3)数据中心相关技术。云计算使数据中心向大型化发展,也带来节能的迫切需求。据统计,2010年数据中心能耗已经占全球总能耗的1.3%,绿色化刻不容缓。
                             在数据中心的能耗中,IT设备、制冷系统和供配电系统占主要部分,因此数据中心的节能技术主要围绕这三个方面。对于IT设备而言,其节能技术发展重点是在相同负载下,通过虚拟化、处理器降频、自动休眠和关闭内核等技术,使设备在获得更好性能的同时降低耗电量。对制冷系统来说,一方面可通过尽量采用自然冷却(Free Cooling)的方式降低能耗;另一方面,可通过热管理技术(冷热风道设计、送风和会风路径设计等)改善数据中心气流组织,实现制冷量的精确供给和按需分配,从而节省制冷系统的能耗。对供配电系统来说,主要节能技术包括选用高效率的、模块化的UPS电源;进行合理的IT设备与供电设备布局,减少供电线路损耗;采用高压直流提高供电可靠性和电源使用率、降低电量损耗并增强系统可维护性。
                             “操作系统”关键技术
                             云计算“操作系统”的主要关键技术包括实现底层资源池化管理的“资源池”管理技术和向用户提供大规模存储、计算能力的分布式任务和数据管理技术。
                             (1)“资源池”管理技术。“资源池”管理技术主要实现对物理资源、虚拟资源的统一管理,并根据用户需求实现虚拟资源(虚拟机、虚拟存储空间等)的自动化生成、分配、回收和迁移,用以支持用户对资源的弹性需求。
                             云计算“资源池”管理技术与传统IT管理软件的主要区别是实现了虚拟资源的“热迁移”,即在物理主机发生故障或需要进行维护操作时,将运行在其上的虚拟机迁移至其他物理主机,同时保证用户业务不被中断。
                             “热迁移”的重要前提是物理服务器使用共享存储器,并且虚拟机的迁移与网络配置的迁移同时进行。
                             (2)分布式任务和数据管理技术。云计算对分布式任务和数据管理的需求主要来源于业界对“大数据”的处理需求。分布式任务管理技术要实现在底层大规模ICT资源上进行分布式的海量计算,并对大量结构化与非结构化的数据进行存储与管理。
                      云计算技术发展
                             GPU云化降低高性能计算使用门槛
                             计算多样化的时代,数据的爆炸愈演愈烈,人工智能、虚拟现实等技术的突飞猛进对高性能计算的需求陡然剧增,CPU性能增速放缓,由CPU和GPU构成的异构加速计算体系,成为整个计算领域的必然趋势,GPU在高性能计算领域的作用愈发明显。
                             AI基础设施市场爆发,GPU用量猛增。近几年,国家政策的导向与资本市场的推动造就了人工智能产业的快速发展,生态逐渐趋于完善,在一定程度上拉动了对基础设施的算力需求。GPU服务器的超强并行计算能力与人工智能相得益彰,得到长足发展。
                             GPU云化可大幅缩减交付周期与使用成本,降低使用门槛。GPU服务器势头强劲的同时也伴随一些问题,服务器造价高昂、交付实施周期长、配置复杂等限制了GPU的使用范围。GPU云化成为破解这一症结的有效方案,GPU云主机可以实现小时级的快速交付,更及时地响应用户需求,灵活的计费模式实现真正的按需计费,大大减少了使用成本。GPU云服务使GPU的强大算力向更宽广的范围蔓延,深度赋能产学研领域。
                             GPU云服务可针对不同应用场景优化配置,易用性大幅提升。根据中国信息通信研究院的可信云GPU评估结果显示,国内主流云服务商的GPU产品均针对特定的使用场景进行了优化,对科学计算、图形渲染、机器学习、视频解码等热门应用领域分别推出不同规格的实例,更加贴合应用;预先集成的GPU加速框架,免除了纷繁复杂的配置工作。
                             服务网格开启微服务架构新阶段
                             (1)微服务架构技术发展愈加成熟。微服务作为一种崭新的分布式应用解决方案在近两年获得迅猛发展。微服务指将大型复杂软件应用拆分成多个简单应用,每个简单应用描述着一个小业务,系统中的各个简单应用可被独立部署,各个应用之间是松耦合的,每个应用仅关注于完成一件任务并很好地完成该任务。相比传统的单体架构,微服务架构具有降低系统复杂度、独立部署、独立扩展、跨语言编程等特点。与此同时,架构的灵活、开发的敏捷同时带来了运维的挑战。应用的编排、服务间的通信成为微服务架构设计的关键因素。目前,在微服务技术架构实践中主要有侵入式架构和非侵入式架构两种实现形式。
                             (2)微服务架构行业应用深入,侵入式架构占据主流市场。微服务架构在行业生产中得到了越来越广泛的应用,例如Netflix已经有大规模生产级微服务的成功实践。而以SpringCloud和Dubbo为代表的传统侵入式开发架构占据着微服务市场的主流地位。侵入式架构将流程组件与业务系统部署在一个应用中,实现业务系统内的工作流自动化。随着微服务架构在行业应用中的不断深入,其支持的业务量也在飞速发展,对于架构平台的要求也越来越高。由于侵入式架构本身服务与通信组件互相依赖,当服务应用数量越来越多时,侵入式架构在服务间调用、服务发现、服务容错、服务部署、数据调用等服务治理层面将面临新的挑战。
                             (3)服务网格推动微服务架构进入新时代。服务网格是一种非侵入式架构,负责应用之间的网络调用、限流、熔断和监控,可以保证应用的调用请求在复杂的微服务应用拓扑中可靠地穿梭。服务网格通常由一系列轻量级的网络代理组成(通常被称为SideCar模式),与应用程序部署在一起,但应用程序不需要知道它们的存在。服务网格通过服务发现、路由、负载均衡、健康检查和可观察性来帮助管理流量。自2017年初第一代服务网格架构Linkerd公开使用之后,Envoy、Conduit等新框架如雨后春笋般不断涌现。2018年初Google、IBM和Lyft联合开发的项目Istio的发布,标志着服务网格带领微服务架构进入新的时代。
                             无服务架构助力企业应用开发函数模块化
                             近年来,互联网服务从最早的物理服务器托管、虚拟机、容器,发展到如今的函数即服务(FaaS),即无服务架构。无服务架构是一种特殊类型的软件体系结构,在没有可见的进程、操作系统、服务器或者虚拟机的环境中执行应用逻辑,这样的环境实际上运行在操作系统之上,后端使用物理服务器或者虚拟机。它是一种“代码碎片化”的软件架构范式,通过函数提供服务。函数即一个可以在容器内运行的小的代码包,提供的是相比微服务更加细小的程序单元。具体的事件会唤醒函数,当事件处理完成时完成调用,代码消失。
                             2014年,AWS推出首个业界云函数服务Lambda。随后几年,各大云计算厂商相继推出自己的云函数服务,不同厂商的函数计算服务所支持的编程语言和函数触发的事件源各有不同。随着无服务架构的兴起,越来越多的开源项目如OpenWhisk、OpenFaaS、Kuberless等开始参与其中,并凭借各自特点正在影响着无服务架构的技术走向。
                             无服务架构将服务器与应用解耦,降低了运维成本,带动了规模经济效益。无服务架构的横向伸缩是完全自动化高弹性的,由于只调用很小的代码包,调用和释放的速度更快了,用户只需为自身需要的计算能力付费,计费粒度可细化至秒级。服务器部署、存储和数据库相关的所有复杂性工作都交由服务商处理,软件开发人员只需专注于与核心业务相关的开发工作,更有效地贯彻敏捷开发理念。同时,服务商运营管理着预定义的应用进程甚至是程序逻辑,当同时共用同一服务的用户达到一定量级将会带来较大的规模经济效益。
                             无服务架构促进持续部署成为新常态。无服务架构可以用来实现业务灵活性的持续部署。通过全自动化的基础设施堆栈的配置和代码部署,让任何并入主干中的代码更改都自动升级到包括生产环境在内的所有环境,可以对任何环境进行应用或回滚变更。当前主流技术架构下持续部署对许多公司仍旧难以实现,无服务技术可以有效弥补用户运维水平的不足,将持续部署带来的红利惠及更广范围。
                             无服务架构打破了以往的惯性思维,并提供了一个极具成本效益的服务。无服务架构仅有两年的历史,目前仍处于起步阶段。但在未来这个领域还会有更大的进步,它将带来软件开发和应用程序部署的一种全新体验。
                             IT运维进入敏捷时代,智能化运维尚处起步阶段
                             (1)IT运维从基础运维向平台运维、应用运维转型升级。随着云计算的发展,IT系统变得越发复杂,运维对象开始由运维物理硬件的稳定性和可靠性演变为能够自动化部署应用、快速创建和复制资源模板、动态扩缩容系统部署、实时监控程序状态,以保证业务持续稳定运行的敏捷运维。同时,开发、测试、运维等部门的工作方式由传统瀑布模式向DevOps(研发运营一体化)模式转变。从软件生命周期来看,第一阶段开发侧需运用敏捷实践处理内部的效率问题,第二阶段需基于持续集成构建持续交付,解决测试团队、运维上线的低效问题,第三阶段持续反馈需使用可重复、可靠的流程进行部署,监控并验证运营质量,并放大反馈回路,使组织及时对问题做出反应并持续优化更改,以提高软件交付质量,加快软件发布速度。
                             (2)DevOps提升软件生命周期效率。DevOps被定义为一组过程、方法与系统的统称,强调优化开发(Dev)、质量保障(QA)、运维(Ops)部门之间的沟通合作,解决运维人员人工干预较多、实时性差等痛点,变被动运维为主动运维,通过高度自动化工具链打通软件产品交付过程,使得软件构建、测试、发布更加快捷、频繁和可靠。据中国信息通信研究院的DevOps能力成熟度评估结果显示,金融机构核心业务仍采用集中式管理方式为主,但外围业务已经开始或已使用了分布式架构,自动化、智能化运维推动金融行业的业务创新。而运营商向云化转型则更注重对云管理平台的需求,如能够支持资源的动态分配和调度、业务监控、故障分析预警、数据库监控以及日常运维的全流程。随着非结构化数据数量激增,运营商通过数据挖掘和分析技术,以提升客户满意度和业务效率是未来的发展目标。DevOps实践贯穿软件全生命周期,提升了传统行业整体效率。
                             (3)智能化运维将成未来发展趋势。DevOps拉通了运维管理体系,海量数据计算、存储、应用和安全等多种需求出现,运维需借助先进的自动化运维管理模式来实现大体量下的系统管理。在大数据技术的背景下,智能运维AIOps被提出,即Artificial Intelligence for IT Operations。AIOps是将人工智能应用于运维领域,通过机器学习的方式对采集的运维数据(日志、监控信息、应用信息等)做出分析、决策,从而达到运维系统的整体目标。目前,AIOps主要围绕质量保障、成本管理和效率提升三方面逐步构建智能化运维场景,在质量保障方面,保障现网稳定运行细分为异常检测、故障诊断、故障预测、故障自愈等基本场景;在成本管理方面,细分为指标监控、异常检测、资源优化、容量规划、性能优化等基本场景;在效率方面,分为智能预测、智能变更、智能问答、智能决策等基本场景。AIOps虽然在互联网、金融等行业有所应用,但仍处于发展初期,未来智能化运维将成为数据分析应用的新增长点和发展趋势。
                             边缘计算与云计算协同助力物联网应用
                             边缘计算是指在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。
                             边缘计算与云计算互为补充。在当今物联网迅猛发展的阶段,边缘计算作为物联网的“神经末梢”,提供了对于计算服务需求较快的响应速度,通常情况下不将原始数据发回云数据中心,而直接在边缘设备或边缘服务器中进行数据处理。云计算作为物联网的“大脑”,会将大量边缘计算无法处理的数据进行存储和处理,同时会对数据进行整理和分析,并反馈到终端设备,增强局部边缘计算能力。
                             边缘计算与云计算协同发展,打造物联网新的未来。在边缘设备上进行计算和分析的方式有助于降低关键应用的延迟、降低对云的依赖,能够及时地处理物联网生成的大量数据,同时结合云计算特点对物联网产生的数据进行存储和自主学习,使物联网设备不断更新升级。以自动驾驶汽车为例,通过使用边缘计算和云计算技术,自动驾驶汽车上的边缘设备将传感器收集的数据在本地进行处理,并及时反馈给汽车控制系统,完成实时操作;同时,收集的数据会发送至云端进行大规模学习和处理,使自动驾驶汽车的AI在可用的情况下从云端获取更新信息,并增强局部边缘的神经网络。
                             云网融合加速网络结构深刻变革
                             云网融合已经成为ICT发展的趋势。伴随着互联网进入大流量、广互联时代,业务需求和技术创新并行驱动加速网络架构发生深刻变革,云和网高度协同,不再各自独立。云计算业务的开展需要强大的网络能力的支撑,网络资源的优化同样要借鉴云计算的理念,随着云计算业务的不断落地,网络基础设施需要更好的适应云计算应用的需求,更好的优化网络结构,以确保网络的灵活性、智能性和可运维性。
                             云间互联是云网融合的一个典型场景。以云间互联为目标的网络部署需求日益旺盛。随着云计算产业的成熟和业务的多样化,企业可根据自身业务需求和实际成本情况选择不同的云服务商提供的云服务,这也形成了丰富的云间互联业务场景,如公有云内部互通、混合云和跨云服务商的公有云互通。据中国信息通信研究院的混合云评估结果显示,当前混合云的组网技术主要以VPN和专线为主,而SD-WAN由于其快速开通、灵活弹性、按需付费等特性也逐渐被人们所关注。在云间互联场景下,云网融合的趋势逐渐由“互联”向“云+网+ICT服务”和“云+网+应用”过渡,云间互联只是过程,最终目的是达成云网和实际业务的高度融合,包括服务资源的动态调整、计算资源的合理分配以及定制化的业务互通等。
                             云网融合的另一个场景是电信云。电信云基于虚拟化、云计算等技术实现电信业务云化,基于NFV、SDN实现网络功能自动配置和灵活调度,基于管理与编排实现业务、资源和网络的协同管理和调度。电信云与云间互联不同,它更关注的是运营商网络的云化转型,包括核心网、接入网、传输网以及业务控制中心等多个层面的网元都可以按云化的方式部署,最终实现运营商网络的软化和云化。
                             开源技术成为云计算厂商共识
                             如今,开源社区逐渐成为云计算各巨头的战场,云计算厂商开始纷纷拥抱开源技术。
                             (1)容器方面。2017年,微软、AWS等云计算巨头厂商先后以白金会员身份加入Linux基金会旗下的云原生计算基金会(CNCF),以加强对Kubernetes开源技术的支持。阿里云更是在2017年两度晋级,从黄金会员到白金会员。截至2018年3月,CNCF白金会员的数量达到18家,黄金会员数量8家,银牌会员的数量148家。
                             (2)虚拟化管理方面。以全球最大的云计算开源社区OpenStack为例,截止到2018年7月,共有白金会员8家,黄金会员20家,合作伙伴104家。其中,我国企业占据了一半的黄金会员席位。同时,华为、九州云、烽火通信、EasyStack、中兴等厂商在OpenStack各版本贡献中持续处于全球前列。此外,OpenStack基金会的会员还包括Intel、Red Hat、Rackspace、爱立信等国际巨头厂商。
                      云计算风险管理
                             云计算带来风险点变化
                             与传统IT系统相比,云计算面临的风险点发生变化,主要体现在如下几个方面:
                             (1)传统安全边界消失。传统自有IT系统是封闭的,对外暴露的只是网页服务器、邮件服务器等少数接口。因此,传统IT系统以“边界”为核心,利用防火墙、入侵防御等手段可以有效阻挡攻击。而在云计算环境下,云暴露在公开的网络中,虚拟化技术使得安全边界概念消失,基于物理安全边界的防护机制难以在云计算环境中得到有效的应用。
                             (2)用户具有动态性。云计算环境下,用户的数量和分类变化频率高,具有动态性和移动性强的特点,静态的安全防护手段作用被削弱,安全防护措施需要进行动态调整。
                             (3)更高的数据安全保护要求。云计算将资源和数据的所有权、管理权和使用权进行了分离,资源和数据不在本地存储,用户失去了对资源和数据的直接控制,再也不能像传统信息系统那样通过物理控制、逻辑控制、人员控制等手段对数据的访问进行控制。面对用户数据安全保护的迫切诉求和庞大的数据规模,云计算企业需要具有更高的数据安全保护水平和更先进的数据保护手段,以避免数据不可用、数据泄露等风险。
                             (4)合规检查更难。云计算企业必须符合广泛的、不断变化的法律法规要求。随着信息领域的迅速发展,各国、各行业都在加强相关的法律法规建设,云计算企业合规清单不断壮大,涉及网络、数据、信息等方方面面。由于云计算可能存在数据存储位置未知、数据来源难追溯、安全控制和责任缺乏透明性等问题,使得云计算企业和云客户在面临合规性检查时存在困难。如今年生效的欧盟《一般数据保护条例》(GDPR),首次对数据处理者的数据保护能力进行严格要求,赋予数据主体更多的权利,适用范围也大幅扩张。对于云服务商来说,在欧盟境内设立分支机构或服务于欧盟客户时应满足GDPR要求,而即使服务于非欧盟客户,非欧盟客户又服务于欧盟客户时,云服务商也适用GDPR。不仅适用场景繁多,云服务商为满足GDPR要求所开展的工作也更加复杂。数据遍布于云环境,如何提高数据掌控与保护能力,满足用户多种权利,如何快速识别数据泄露事件,及时上报监管部门,都是云服务商合规的难点。
                             (5)多种外部风险。云计算企业搭建云平台时,可能会涉及购买第三方厂商的基础设施、运营商的网络服务等情况。基础设施、网络等都是决定云平台稳定运行的关键因素。因此,第三方厂商和运营商的风险管理能力将影响云计算企业风险事故的发生情况。同时,云计算企业在运营时,可能将数据处理与分析等工作分包给第三方合作企业,分包环节可能存在数据跨境处理、多方责任难界定等风险。
                             如下图所示云计算安全风险架构,对于云计算平台,IaaS层主要考虑基础设施相关的安全风险,PaaS层需要保证运行环境和信息的安全,SaaS层从应用、Web、网络、业务、内容、数据等方面保证应用安全。在云平台的运营过程中,涉及复杂的人员风险、管理流程风险和合规风险。同时,云计算开源技术使用率不断攀升,开源风险也成为云计算领域的关注重点。
                             
                             云计算安全风险架构
                             云计算带来风险责任变化
                             不同云计算企业提供云服务的侧重点不同,企业在使用云服务时,可能会涉及与多个云服务商的合作。任何一个云服务的参与者都需要承担相应的责任,不同角色的参与者在承担各自责任的同时,还需要与其他参与者协同合作,共同规避云平台风险事件的发生。
                             云计算责任共担模式在业界已经达成共识,但还没有统一的责任共担模型。已有部分厂商根据业务特点,建立了自己的责任共担模型。以亚马逊AWS为例,AWS作为IaaS+PaaS为主的服务提供商,负责管理云本身的安全,即保护运行所有AWS云服务的基础设施。客户负责“云内部的安全”,即业务系统安全。这种模式对于国内市场来说,可能会有局限性。在国内,尤其对于SaaS模式,很多用户仍会有“上云,安全就由云服务商负责”的误解。实际上,SaaS模式下数据安全应由云服务商和客户共同负责,云客户应提高安全使用SaaS服务的能力,避免发生误删数据等风险事故。同时,不少信息技术水平较弱的客户,在接触云计算初期,安全风险防控能力不够强,购买SaaS服务后,会使用而不懂如何去进行安全防护,云服务商需要建立更强大的生态以保障云客户安全。
                             云服务提供商应基于云客户的需求,提供云主机等服务和相应的安全策略,同时负责维护云平台的高可用,在出现风险事件时,对基础环境、主机环境、网络环境甚至是应用环境进行故障定位、处置和总结。针对国内市场,在SaaS模式下,云服务商应充分考虑云客户安全防护能力水平,提前告知服务使用方法,在云客户存在疑问时,及时提供解答和帮助,避免发生不必要的安全事故。
                             云客户应基于云服务提供商提供的服务产品使用和安全说明,正确使用服务或产品,避免因为误操作、疏忽等因素造成云平台的风险,同时云客户应按照本公司风险管理要求,对云上信息系统进行风险评估与治理。
                             数据保护贯穿数据使用的整个生命周期,需要云客户与云服务提供商共同维护数据安全。
                             云计算风险管理手段多样化
                             传统IT系统在进行风险管理时,主要通过安全厂商进行安全检查、基于安全软件实现安全防护,而随着云计算风险点和风险责任的变化,除安全厂商外,云计算风险管理需要联动社会多方以提高风险管理能力,包括保险企业、第三方认证机构、监督管理机构等。
                             云计算风险管理手段主要包括:通过事前评估规避风险、事中监控发现风险、事后处置解决风险,建立完善的风险评估体系,全方位保障云平台稳定运行;以金融带动风险管理发展,通过云保险分担事故带来的损失;联合云计算企业、云客户、安全厂商多方建立云计算风险信息共享平台,实现企业互惠共赢。
               云计算产业体系
               云计算产业由云计算服务业、云计算制造业、基础设施服务业以及支持产业等组成,如下图所示。
               
               云计算产业体系
                      云计算服务业
                      云计算服务业包括基础设施即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS)。IaaS服务最主要的表现形式是存储服务和计算服务,主要服务商如亚马逊、Rackspace、Dropbox等公司。PaaS服务提供的是供用户实施开发的平台环境和能力,包括开发测试、能力调用、部署运行等,提供商包括微软、谷歌等。SaaS服务提供实时运行软件的在线服务,服务种类多样、形式丰富,常见的应用包括客户关系管理(CRM)、社交网络、电子邮件、办公软件、OA系统等,服务商有Salesforce、GigaVox、谷歌等。
                      基础设施服务业
                      基础设施服务业主要包括为云计算提供承载服务的数据中心和网络。数据中心既包括由电信运营商与数据中心服务商提供的租用式数据中心,也包括由云服务提供商自建的数据中心。网络提供商现仍主要是传统的电信运营商,同时谷歌等一些云服务提供商也已经开始自建全球性的传输网络。
                      云计算制造业
                      云计算制造业涵盖云计算相关的硬件、软件和系统集成领域。软件厂商包括基础软件、中间件和应用软件的提供商,主要提供云计算操作系统和云计算解决方案,知名企业如威睿(VMware)、思杰(Citrix)、红帽、微软等;硬件厂商包含网络设备、终端设备、存储设备、元器件、服务器等的制造商,如思科、惠普、英特尔等。一般来说,云计算软硬件制造商通过并购或合作等方式成为新的云计算系统集成商的角色,如IBM、惠普等,同时传统系统集成商也在这一领域占有一席之地。
                      云计算支持产业
                      云计算支持产业包括云计算相关的咨询、设计和评估认证机构。传统IT领域的咨询、设计和评估机构,如Uptime、LEED、Breeam等,均以不同程度涉足云计算领域。
               云计算对电子商务的发展影响
                      云计算在电子商务中的应用优势
                             投入成本节约化
                             传统电子商务企业为了维持正常的运作,需要购入大量的服务器、计算机等设备,并为设备更新及维修花费大量资金。然而,随着云计算逐渐应用到电子商务行业,电商企业只需要链接互联网,就能够使用强大的云计算功能。具体来说,云计算通过构建虚拟数据中心,把用户端的存储、传输以及计算功能聚集并形成一个虚拟数据池,通过网络传输数据信息,从而为客户端提供服务。因而,云计算的应用为电子商务企业节省了大量的设备准备及人才培养费用,大大降低了电商行业的投入成本。
                             数据存储安全化
                             传播快速、分布广泛的互联网在为网络用户带来便利的同时,也滋生了网络病毒的恶意传播,严重威胁着网络系统安全,一旦网络威胁发生、电子商务数据泄露,电商企业将面临巨大的经济损失。而云计算的应用,可以大大提高数据存储的安全性,为电商企业的发展提供安全保障。简单来说,云计算把电子商务数据存储到“云”中,“云”提供商自身专业的安全保护策略以及系统安全架构可以为电商企业的信息安全保驾护航。同时,相对于传统存储方式,云计算的权限管理十分严格,共享数据只能够向自身指定的群体传输。
                             商业活动便捷化
                             云计算的应用促进了商业活动进一步跨越时间以及空间范围的障碍,能够更加自由地进行移动交易。在云计算环境下,用户可以更加便捷地搜索所需求商品、浏览推荐产品、完成网络购物。云计算依靠联合众多个体计算机而形成一个整体,产生强大的计算能力,合理地调度信息资源、科学地分配计算任务,大大提高了商业活动的效率,为网络购物提供了个性化、自由化服务。
                             数据资源共享化
                             依靠云计算技术,电子商务行业能够把不同终端设备之间的数据互通互联,形成数据资源中心,存储在云端,并对合法访问云端的申请授予权限,用户通过终端设备联网,能够随时、随地对共享数据资源进行调取与访问。同时,用户可以自由地在共享资源中选择自己需求的信息,极大地方便了用户使用共享信息。相对于传统共享模式,当计算机出现故障时,共享数据受到的影响极小,因为云计算技术能够快速定位故障计算机,及时备份数据,同时选择另外的服务器来完成存储数据的任务。
                      云计算应用背景下电子商务模式的转变
                      商务模式作为为企业创造利益的手段、一种商业活动的工具,具有紧跟时代发展、不断创新变革的特点。随着云计算技术的不断深入应用,电子商务模式也发生了革命性的转变。云计算应用背景下电子商务模式的转变可以体现在以下三个方面:
                      (1)应用模式方面。传统应用模式依靠的是计算机本地系统进行操作,而在云计算技术应用下,电子商务企业将ERP、PDM以及OA等数据资源存储在云端,云端下再链接人工服务。
                      (2)消费模式方面。传统的电商消费模式依靠的是由单机许可使用计算机软件产品及硬件产品,而云计算背景下企业使用的硬件及软件设备可以直接向SAAS层级过渡;同时,用户的消费模式逐渐转变到移动终端支付模式。
                      (3)外包模式方面。随着云计算在电子商务行业的应用,外包模式的应用范围已经不再仅仅局限于IT行业,并且已经逐步拓展到电商领域。在电子商务领域,外包模式包含人才资源外包、管理团队外包、决策运营外包等众多内容。并且基于SAAS模式,电子商务企业可以自由使用外包模式。外包模式的应用,促进了电子商务企业拓宽业务领域,完成行业升级转型。



更多复习资料
请登录电脑版软考在线 www.rkpass.cn

京B2-20210865 | 京ICP备2020040059号-5
京公网安备 11010502032051号 | 营业执照
 Copyright ©2000-2025 All Rights Reserved
软考在线版权所有