免费智能真题库 > 历年试卷 > 系统架构设计师 > 2013年下半年 系统架构设计师 下午试卷 论文
  第3题      
  知识点:   可靠性   可靠性设计   软件可靠性设计   软件设计   设计过程   系统可靠性   性能需求

 
随着软件的日益普及,系统中软件成分不断增加,使得系统对软件的依赖越来越强。软件的可靠性对系统可靠性的影响越来越大。而实践证明,保障软件可靠性最有效、最经济、最重要的手段是在软件设汁阶段采取措施进行可靠性控制,为此提出了软件可靠性设计的概念。
软件可靠性设计就是在常规的软件设计中,应用各种方法和技术,使软'牛设计在兼顾用户功能和性能需求的同时,全面满足软件的可靠性要求。软件可靠性设计应和软件的常规设计紧密结合,贯穿于软件设计过程的始终。
 
问题:3.1   请围绕“论软件可靠性设计技术的应用”论题,依次从以下三个方面进行论述。
1. 概要叙述你参与管理和开发的软件项目以及你在其中所承担的主要工作。
2. 结合项目实际,论述你在项目开发过程中,进行软件可靠性设计时遵循的基本原则;论述你在该项目中所采用的具体可靠性设计技术。
3. 阐述你在具体的可靠性设计工作中,为了分析影响软件可靠性的主要因素,所采用的可靠性分析方法。
 
 
 

   知识点讲解    
   · 可靠性    · 可靠性设计    · 软件可靠性设计    · 软件设计    · 设计过程    · 系统可靠性    · 性能需求
 
       可靠性
        (1)完备性。完备性评价指标及测量,如下表所示。
        
        完备性评价指标及测量
        (2)连续性。连续性评价指标及测量,如下表所示。
        
        连续性评价指标及测量
        
        (3)稳定性。稳定性评价指标及测量,如下表所示。
        
        稳定性评价指标及测量
        (4)有效性。有效性评价指标及测量,如下表所示。
        
        有效性评价指标及测量
        (5)可追溯性。可追溯性评价指标及测量,如下表所示。
        
        可追溯性评价指标及测量
        
 
       可靠性设计
        嵌入式系统硬件相关的可靠性设计往往是为“在有限的资源下尽可能提高可靠性”。因此可靠性设计通常需要考虑如下因素,以平衡不同因素对可靠性的影响:
        .有效的散热,降低高温对系统的危害;
        .尽量减少高敏感元器件的使用;
        .更多的使用可靠度高、质量好的元器件;
        .指定采用屏蔽性好或者内嵌的测试方法;
        .使用最少的元器件设计出来简单的电路;
        .在电子元器件级别进行冗余。
        温度是影响所有电子元器件的重要因素之一,而所有元器件都会产生热量。过高的温度会对元器件造成不可逆转的损伤,并阻碍电流流动。而且高温也是元器件损害的最主要的原因。同时过低温也会损坏电子设备。一般来说设备需要工作在所设计的环境中,不同级别的设备会对不同环境的耐受级别不同,因此根据不同用途要选择合适的设备,同时使用适当的散热或者保温措施。
        重要的是,元器件工作在标称额定值(环境)以内对电子设备的可靠性会有较大的提升。对于电容、电阻等元器件和各类芯片,都会对电压、电阻、功率、频率等有着严格的规定。保证电子元器件、电路工作在合理的环境中可以有效的保护元器件、降低故障发生的可能,提高可用性。此外选用高可靠的元器件也可以有效地提高可靠性。在选用可靠的元器件并对环境做出保证后,还应当进行筛选和老化实验保证元器件的一部分不合格元器件筛除。
        根据概率论的相关知识,若假设所有元器件出错的概率为p,而n个元器件中任意元器件出错都会导致系统崩溃,则整个系统出错的概率为1-(1-pn。当n增加时,出错的概率会以指数形式增长。因此,降低元器件个数、简化设计可以有效地降低故障发生的概率从而提高可靠性。当一个部件的故障率为p而同时有n个冗余部件时,其整体故障的概率为pn。可以看出,当冗余元器件增多的时候,整体的故障概率会成指数形式降低。因此,有效的冗余设计可以保证系统的可靠性提高。
 
       软件可靠性设计
        在测试阶段我们利用测试手段收集测试数据,并利用软件可靠性模型,可以评估或预测软件的可靠性,这些软件可靠性测试活动虽然能通过查错-排错活动有限地改善软件可靠性,但不能从根本上提高软件的可靠性,也难以保证软件可靠性,并且修改由于设计导致的软件缺陷,有可能付出比较昂贵的代价。实践证明,保障软件可靠性最有效、最经济、最重要的手段是在软件设计阶段采取措施进行可靠性控制。为了从根本上提高软件的可靠性,降低软件后期修改的成本和难度,人们提出了可靠性设计的概念。
        可靠性设计其实就是在常规的软件设计中,应用各种方法和技术,使程序设计在兼顾用户的功能和性能需求的同时,全面满足软件的可靠性要求,即采用一些技术手段,把可靠性“设计”到软件中去。软件可靠性设计技术就是以提高和保障软件的可靠性为目的,在软件设计阶段运用的一种特殊的设计技术。
        在软件工程中已有很多比较成熟的设计技术,如结构化设计、模块化设计、自顶向下设计、自底向上设计等,这些技术是为了保障软件的整体质量而采用的,在此基础上,为了进一步提高软件的可靠性,通常会采用一些特殊设计技术。虽然软件可靠性设计技术与普通的软件设计技术没有明显的界限,但软件可靠性设计仍要遵循一些自己的原则:
        ①软件可靠性设计是软件设计的一部分,必须在软件的总体设计框架中使用,并且不能与其他设计原则相冲突。
        ②软件可靠性设计在满足提高软件质量要求的前提下,以提高和保障软件可靠性为最终目标。
        ③软件可靠性设计应确定软件的可靠性目标,不能无限扩大化,并且排在功能度、用户需求、开发费用之后考虑。
        可靠性设计概念被广为引用,但并没有多少人能提出非常实用并且广泛运用的可靠性设计技术。一般来说,被认可的且具有应用前景的软件可靠性设计技术主要有容错设计、检错设计、降低复杂度设计等技术。
               容错设计技术
               对于软件失效后果特别严重的场合,如飞机的飞行控制系统、空中交通管制系统、核反应堆安全控制系统等,可采用容错设计方法。常用的软件容错技术主要有三种方法:恢复块设计、N版本程序设计和冗余设计。
               . 恢复块设计。
               程序的执行过程可以看成是由一系列操作构成的,这些操作又可由更小的操作构成。恢复块设计就是选择一组操作作为容错设计单元,从而把普通的程序块变成恢复块。被选择用来构造恢复块的程序块可以是模块、过程、子程序、程序段等。
               一个恢复块包含有若干个功能相同、设计差异的程序块文本,每一时刻有一个文本处于运行状态。一旦该文本出现故障,则用备份文本加以替换,从而构成“动态冗余”。软件容错的恢复块方法就是使软件包含有一系列恢复块。
               . N版本程序设计。
               N版本程序的核心是通过设计出多个模块或不同版本,对于相同初始条件和相同输入的操作结果,实行多数表决,防止其中某一软件模块/版本的故障提供错误的服务,以实现软件容错。为使此种容错技术具有良好的结果,必须注意以下两个方面:
               ①使软件的需求说明具有完全性和精确性。这是保证软件设计错误不相关的前提。因为软件的需求说明是不同设计组织和人员的惟一共同出发点。
               ②设计全过程的不相关性。它要求各个不同的软件设计人员彼此不交流,程序设计使用不同的算法、不同的编程语言、不同的编译程序、不同的设计工具、不同的实现方法和不同的测试方法。为了彻底保证软件设计的不相关性,甚至提出设计人员应具有不同的受教育背景,来自不同地域、不同的国家。
               . 冗余设计。
               改善软件可靠性的一个重要技术是冗余设计。在硬件系统中,在主运行的系统之外备用额外的元件或系统,如果出现一个元件故障或系统故障,则立即更换冗余的元件或切换到冗余的系统,则该硬件系统仍可以维持运行。在软件系统中,冗余技术的运用有所区别。如果我们采用相同两套软件系统作为互为备份,其意义不大,因为在相同的运行环境中,一套软件出故障的地方,另外一套也一定会出现故障。软件的冗余设计技术实现的原理是在一套完整的软件系统之外,设计一种不同路径、不同算法或不同实现方法的模块或系统作为备份,在出现故障时可以使用冗余的部分进行替换,从而维持软件系统的正常运行。
               从表面上看,设计开发完成同样功能但实现方法完全不同的两套软件系统,需要的费用可能接近于单个版本软件开发费用的两倍,但采用冗余技术设计软件所增加的额外费用肯定远低于重新设计一个版本软件的费用。这是因为大多数设计花费,例如文档、测试以及人力都是有可能复用的。冗余设计还有可能导致软件运行时所花费的存储空间、内存消耗以及运行时间有所增加,这就需要在可靠性要求和额外付出代价之间作出折衷。
               检错技术
               在软件系统中,无需在线容错的地方,或不能采用冗余设计技术的部分,如果对可靠性要求较高,故障有可能导致严重的后果,一般采用检错技术,在软件出现故障后能及时发现并报警,提醒维护人员进行处理。检错技术实现的代价一般低于容错技术和冗余技术,但它有一个明显的缺点,就是不能自动解决故障,出现故障后如果不进行人工干预,将最终导致软件系统不能正常运行。
               采用检错设计技术要着重考虑几个要素:检测对象、检测延时、实现方式、处理方式。
               . 检测对象:检测对象包含两个层次的含义,检测点和检测内容。在设计时应考虑把检测点放在容易出错的地方,和出错对软件系统影响较大的地方;检测内容选取那些有代表性的、易于判断的指标。
               . 检测延时:从软件发生故障到被自检出来是有一定延时的,这段延时的长短对故障的处理是非常重要的,因此,在软件检错设计时要充分考虑到检测延时。如果延时长到影响故障的及时报警,则需要更换检测对象或检测方式。
               . 实现方式:最直接的一种实现方式是判断返回结果,如果返回结果超出正常范围,则进行异常处理。计算运行时间也是一种常用的技术,如果某个模块或函数运行超过预期的时间,可以判断出现故障。另外,还有置状态标志位等多种方法,自检的实现方式要根据实际情况来选用。
               . 处理方式:大多数检错采用“查出故障-停止软件系统运行-报警”的处理方式,但也有采用不停止或部分停止软件系统运行的情况,这一般由故障是否需要实时处理来决定。
               降低复杂度设计
               前面我们讲到,软件和硬件最大的区别之一就是软件的内部结构比硬件复杂得多,我们用软件复杂度来定量描述软件的复杂程度。软件复杂性常分为模块复杂性和结构复杂性。模块复杂性主要包含模块内部数据流向和程序长度两个方面,结构复杂性用不同模块之间的关联程度来表示。软件复杂度可用涉及到模块复杂性和结构复杂性的一些统计指标来进行定量描述,在这里就不进行详细叙述了。
               软件的复杂性与软件可靠性有着密切的关系,软件复杂性是产生软件缺陷的重要根源,有研究表明,当软件的复杂度超过一定界限时,软件缺陷数会急剧上升,软件的可靠性急剧下降。因此,在设计的时候就应考虑降低软件的复杂性,使之处于一个合理的阈值之内,这是提高软件可靠性的有效方法。
               降低复杂度设计的思想就是在保证实现软件功能的基础上,简化软件结构,缩短程序代码长度,优化软件数据流向,降低软件复杂度,从而提高软件可靠性。
               除了容错设计、检错设计和降低复杂度设计技术外,人们尝试着把硬件可靠性设计中比较成熟的技术,如故障树分析(FTA)、失效模式与效应分析(FMEA)等运用到软件可靠性设计领域,这些技术大多是运用一些分析、预测技术,在软件设计时就充分考虑影响软件可靠性的因素,并采取一些措施地进行优化。由于软件与硬件内部性质的巨大差异,这些技术在软件可靠性设计领域的应用效果和范围极其有限。
 
       软件设计
               软件设计的任务
               在给定系统的需求规格说明书后,需要对软件的结构进行设计,并对设计的过程进行管理。在嵌入式系统的软件设计过程中,需要完成以下一些任务。
                      准备工作计划
                      在软件设计之前,首先要制订详细的工作计划,其内容包括:
                      .过程管理方案:包括软件开发的进度管理、软件规模和所需人年的估算、开发人员的技能培训等;
                      .开发环境的准备方案:包括开发工具的准备、开发设备的准备、测试装备的准备、分布式开发环境下的开发准则等;
                      .软硬件联机调试的方案:联调的起始时间、地点、人员和具体的准备工作;
                      .质量保证方案:包括质量目标计划、质量控制计划等;
                      .配置控制方案:包括配置控制文档的编写、配置控制规则的制订等。
                      确定软件的结构
                      设计软件的各个组成部分,包括:
                      .任务结构的设计:使用操作系统提供的函数,设计出一个最佳的任务结构;
                      .线程的设计;
                      .公共数据结构的设计:在确保系统一致性的基础上,设计出所需的公共数据;
                      .操作系统资源的定义;
                      .类的设计;
                      .模块结构设计:在设计时要充分考虑模块的划分、标准化、可重用和灵活性等;
                      .内存的分配与布局。
                      设计评审
                      对于软件设计的结果,进行一次设计评审,并在必要时对设计进行修正。具体内容包括:
                      .确认每件工作的执行方法是否恰当,其内容是否完善;
                      .确认该设计完成了系统需求规格说明书所要求的功能和服务;
                      .评估任务结构设计、评估类的设计、评估模块结构设计;
                      .对软件设计的结果进行总结,编写出相应的文档。
                      维护工作计划
                      执行软件设计工作控制,在每日、每周和每月的时间粒度上对进度进行控制,确保软件设计能够如期完成。
                      与硬件部门密切合作、相互协调
                      根据工作计划中的安排,定期与硬件部门召开会议,协调各自的进展。如果软件规格说明书发生了变化,立即进行调整,重新进行软件设计。
                      控制工作的结果,把工作记录存档
                      掌握当前的工作进展情况,尽早地发现和分析问题,并采取相应的措施。对各种事件进行跟踪记录,包括:
                      .执行过程控制,跟踪进展情况并定期记录、存档。
                      .执行质量控制,保留质量记录。
                      .记录产品的配置、版本变化、bug的发现和处理等信息。
               软件架构设计
               软件架构也称为软件体系结构,需要考虑如何对系统进行分解,对分解后的组件及其之间的关系进行设计,满足系统的功能和非功能需求。软件架构形成过程如下图所示。
               
               架构的形成过程概要
               软件架构设计需要从用户业务需求、未来应用环境、需求分析、硬件基础、接口输入、数据处理、运算或控制规律、用户使用等方面进行综合、权衡和分析基础上产生。面向某种问题的架构一旦确定就很难改变,随后的架构设计需要通过一系列的迭代开发完善,使得软件架构日趋成熟、稳定。
               软件架构的重要作用也在于控制一个软件系统的使用、成本和风险。好的架构要求是和谐的软件架构,包括与上一级系统架构相互和谐、与系统中同一级的其他组件架构互相和谐,确保系统满足性能、可靠性、安全性、信息安全性和互操作性等方面的关键要求,也具有可扩展、可移植性,从而为一个软件带来长久的生命力。
               在大量开发实践中,有很多广泛使用并被普遍接受的软件架构设计原则,这些原则独立于具体的软件开发方法,主要包括抽象、信息隐藏、强内聚和松耦合、关注点分离等。
               (1)抽象:这是软件架构的核心原则,也是人们认识复杂客观世界的基本方法。抽象的实质是提取主要特征和属性,从具体的事务中通过封装来忽略细节,并且运用这些特征和属性,描述一个具有普遍意义的客观世界。软件架构设计中需要对流程、数据、行为等进行抽象。复杂系统含有多层抽象,从而有多个不同层次架构。
               (2)信息隐藏:包括局部化设计和封装设计。局部化设计就是将一个处理所涉及到的信息和操作尽可能地限制在局部的一个组件中,减少与其他组件的接口。而封装设计是将组件的外部访问形式尽可能简单、统一。
               (3)强内聚和松耦合:强内聚是指软件组件内的特性,即组件内所有处理都高度相关,所有处理组合在一起才能组成一个相对完整的功能。而松耦合是指软件组件之间的特性,软件组件之间应尽量做到没有或极少的直接关系,使其保持相对独立,这样使得未来的修改、复用简单,修改之后带来的影响最小。
               (4)关注点分离:所谓关注点是软件系统中可能会遇到的多变的部分。如为适应不同运行接口条件,需要进行适应性的参数调整和驱动配置。关注点分离设计是将这部分组件设计成为相对独立的部分,使未来的系统容易配置和修改。而核心的部分可以保持一个相对独立的稳定状态。如果功能分配使得单独的关注点组件足够简单,那么就更容易理解和实现。但“展示某些关注点得到满足时,可能会影响到其他方面的关注点,但架构师必须能够说明所有关注点都已得到满足”。
               以上的原则中,删除需求细节或对细节进行抽象是最重要的工作,为用户的需求创建抽象模型,通过抽象将特殊问题映射为更普遍的问题类别,并识别各种模式。
               软件架构设计使用纵向分解和横向分解两种方式。纵向分解就是分层,横向分解就是将每一个层面分成相对独立的部分。经过分解之后,可以将一个完整的问题分解成多个模块来解决。模块是其中可分解、可组装,功能独立、功能高度内聚、之间低耦合的一个组件。
               类似于建筑架构,软件架构也决定了软件产品的好用、易用、可靠、信息安全、可扩展、可重用等特性,好的软件架构也给人完整、明确、清晰等赏心悦目的感觉,具有较长的生命力。
               架构设计是围绕业务需求带来的问题空间到系统解决空间第一个顶层设计方案。按照抽象原则,在这个阶段进行的架构设计关注软件设计环节抽象出来的重要元素,而不是所有的设计元素。在架构设计时将软件这些要素看作是黑盒,架构设计需要满足黑盒的外部功能和非功能需求的目标。一个软件的架构设计首先为软件产品的后续开发过程提供基础,在此基础上可将一个大规模的软件分解为若干子问题和公共子问题。而一般意义的软件设计是软件的底层设计,开发人员需要关注各子问题或要素的进一步分解和实现,是根据架构设计所定义的每个要素的功能、接口,进一步实现要素组件内部的配置、处理和结构。在遵守组件外部属性前提下,考虑实现组件内部的细节及其实现方法。对于其中的公共子问题,形成公共类和工具类,从而可以达到重用的目的。
               一般的软件构架是根据需求自上而下方式来设计,即首先掌握和研究利益相关方的关键需求,基本思路是首先进行系统级的软件架构设计,需要将软件组件与其外部环境属性绑定在一起,关注软件系统与外部环境的交联设计;其次将一个大的系统划分成各组成部分,这些部分可以按照架构设计的不同方法,分为层次或成为模块;之后再开始研究所涉及到的要素,再实现这些要素以及定义这些要素之间的关系。
               在实际工作中,软件构架也可采用自底向上的方法,前提是已经建立了一个成熟稳定的软件架构,也可以称之为“模式”。模式是组织一级设计某一类具体问题的顶层思路,是为了解决共有问题解的方案模板,但并不是一个问题的设计或设计算法。
               模式常常整合在一起使用,提供解决更大、更复杂问题的解决方案,而组成一个解决问题的通用框架。框架往往提供统一平台和开发工具,而且已经高效地利用了已经经过验证的模式、技术和组件。在新软件系统的设计中指定沿用或重用这种架构框架,这时其他重要元素可以在这个架构基础上针对新的需求进行扩展,有时是针对性地进行参数化设计。所以在架构设计中可以借用模式的概念进行设计,采用成熟的先进的设计框架和工具提高开发的效率,保证设计正确性。
               下图所示是针对架构设计中非功能需求的多维度分析,从中可知任何一个因素的变化都会带来对其他因素的影响。实际上软件架构设计属于软件设计过程的一部分,但超越了系统内部的算法和数据结构的详细设计。
               
               架构的多维度分析
               在架构设计阶段,需要定义边界条件、描述系统组织结构、对系统的定量属性进行约束、帮助对模型进行描述并基本构造早期的原型、更准确地描述费用和时间的评估。
               软件设计方法
               在将系统分解为各个组件的过程中,需要采取不同的策略,而每个策略则关注不同的设计概念。根据分解过程中所采用的不同策略,设计方法有基于功能分解的设计方法、基于信息隐藏的设计方法和基于模型驱动开发的设计方法等分类。
               (1)基于功能分解的设计方法。实时结构化分析与设计采用了功能分解,系统被分解为多个函数,并且以数据流或控制流的形式定义函数之间的接口;基于并发任务结构化的设计(Design Approach for Real-Time Systems,DARTS)提供了任务结构化标准,辅助人员确定系统中的并发任务,并指导定义任务接口。
               (2)基于信息隐藏的设计方法。面向对象(Object Oriented,OO)设计方法将数据和数据上操作封装在对象实体中,对象外界不能够直接对对象内部进行访问和操作,只能通过消息间接访问对象,符合人类思维方式,提高软件的扩展性、维护性和重用性。
               (3)基于模型驱动开发的设计方法。通过借助有效的(Model Driven Development,MDD)工具,构建和维护复杂系统的设计模型,直接产生高质量的代码,将开发的重心从编码转移到设计。当前使用较为广泛的MDD工具有IBM公司的Rhapsody。
 
       设计过程
        结构化设计的过程如下。
        (1)精化DFD。
        (2)确定DFD的信息流类型(变换流或事务流)。
        (3)根据流类型分别将变换流或事务流转换成程序结构图。
        (4)根据软件设计的原则对程序结构图做优化。
        (5)描述模块功能、接口及全局数据结构。
        (6)复查。
 
       系统可靠性
        系统可靠性是系统在规定的时间内及规定的环境条件下,完成规定功能的能力,也就是系统无故障运行的概率。这里的故障是系统行为与需求的不符,故障有等级之分。系统可靠性可以通过历史数据和开发数据直接测量和估算出来,与之相关的概念主要有平均无故障时间、平均故障修复时间、平均故障间隔时间、系统可用性等。
        (1)平均无故障时间。可靠度为Rt)的系统的平均无故障时间(Mean Time To Failure, MTTF)定义为从t=0时到故障发生时系统的持续运行时间的期望值,计算公式如下:
        
        如果Rt)=e-λt,则MTTF=1/λλ为失效率,是指器件或系统在单位时间内发生失效的预期次数,在此处假设为常数。例如,假设同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障。这种计算机千小时的可靠度R为(1000-10)/1000=0.99。失效率为10/(1000×1000)=1×10-5。因为平均无故障时间与失效率的关系为MTTF=1/λ,因此,MTTF=105小时。
        (2)平均故障修复时间。可用度为At)的系统的平均故障修复时间(Mean Time ToFix, MTTR)可以用类似于求MTTF的方法求得。设A1t)是在风险函数Zt)=0且系统的初始状态为1状态的条件下At)的特殊情况,则
        
        此处假设修复率μt)=μ(常数),修复率是指单位时间内可修复系统的平均次数,则:
        MTTR=1/μ
        (3)平均故障间隔时间。平均故障间隔时间(Mean Time Between Failure, MTBF)常常与MTTF发生混淆。因为两次故障(失败)之间必然有修复行为,因此,MTBF中应包含MTTR。对于可靠度服从指数分布的系统,从任一时刻t0到达故障的期望时间都是相等的,因此有:
        MTBF=MTTR+MTTF
        在实际应用中,一般MTTR很小,所以通常认为MTBF≈MTTF。
        (4)系统可用性。系统可用性是指在某个给定时间点上程序能够按照需求执行的概率,其定义为
        可用性=MTTF/(MTTF+MTTR)×100%
        计算机系统是一个复杂的系统,而且影响其可靠性的因素也非常繁复,很难直接对其进行可靠性分析。但通过建立适当的数学模型,把大系统分割成若干子系统,可以简化其分析过程。
               串联系统
               假设一个系统由n个子系统组成,当且仅当所有的子系统都能正常工作时,系统才能正常工作,这种系统称为串联系统,如下图所示。
               
               串联系统
               设系统各个子系统的可靠性分别用R1R2,…,Rn表示,则系统的可靠性为:
               R=R1×R2×…×Rn
               如果系统的各个子系统的失效率分别用λ1λ2,…,λn来表示,则系统的失效率为:
               λ=λ1+λ2+…+λn
               并联系统
               假如一个系统由n个子系统组成,只要有一个子系统能够正常工作,系统就能正常工作,如下图所示。
               
               并联系统
               设系统各个子系统的可靠性分别用R1R2,…,Rn表示,则系统的可靠性为:
               R=1-(1-R1)×(1-R2)×…×(1-Rn
               假如所有的子系统的失效率均为λ,则系统的失效率为:
               
               在并联系统中只有一个子系统是真正需要的,其余n-1个子系统称为冗余子系统,随着冗余子系统数量的增加,系统的平均无故障时间也增加了。
               模冗余系统
               m模冗余系统由m个(m=2n+1为奇数)相同的子系统和一个表决器组成,经过表决器表决后,m个子系统中占多数相同结果的输出作为系统的输出,如下图所示。
               
               模冗余系统
               在m个子系统中,只有n+1个或n+1个以上子系统能正常工作,系统就能正常工作,输出正确结果。假设表决器是完全可靠的,每个子系统的可靠性为R0,则m模冗余系统的可靠性为:
               
               其中为从m个元素中取j个元素的组合数。
               在实际应用系统中,往往是多种结构的混联系统。例如,某高可靠性计算机系统由下图所示的冗余部件构成。
               显然,该系统为一个串并联综合系统,我们可以先计算出中间2个并联系统的可靠度,根据并联公式R=1-(1-R1)×(1-R2)×…×(1-Rn),可得到3个部件并联的可靠度为1-(1-R3,2个部件并联的可靠度为1-(1-R2。然后,再根据串联公式R=R1×R2×…×Rn,可得到整个系统的可靠度为:R×(1-(1-R3)×(1-(1-R2)×R
               
               某计算机系统
 
       性能需求
        在需求分析中要分析网络的多种性能特性,包括响应时间、延迟、等待时间、利用率、带宽、容量、吞吐量、可用性、可靠性、可恢复性、冗余度、适应性、可伸缩性、效率和费用等。有些需求用户不是很关心,但对于设计者却是必须考虑的。随着计算机网络数量的增长、规模的扩大,如何提高网络性能成为十分重要的问题。与衡量单机系统的性能不同,网络性能是衡量多台计算机系统的性能。了解网络用户的需要,设定恰当的性能目标,合理选择网络结构和组成,便能得到满足用户需求且性能比较好的网络。
        网络用户关心的网络性能是能否获得最快的响应,网络管理员关心的网络性能是能否获得最高的资源利用率,两者需要很好地平衡。这种平衡包括两个方面:一方面是性能和价格的折中,另一方面是吞吐量和响应时间的平衡。
   题号导航      2013年下半年 系统架构设计师 下午试卷 论文   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
 
第3题    在手机中做本题