免费智能真题库 > 历年试卷 > 网络规划设计师 > 2019年下半年 网络规划设计师 下午试卷 论文
  第2题      
  知识点:   交换机   路由器   存储系统   基础设施   实体   维护   虚拟化技术

 
论网络虚拟化技术在企业网络中的设计与应用
随着直联网应用的快速发展,企业数据中心的服务器、路由器交换机存储系统基础设施的规模越来越庞大,管理维护成本和难度也随之增加。采用虚拟化技术将这些庞大的基础设施和资源进行整合,组成多个逻辑实体,实现弹性管理和集约化管理, 有效降低管理维护成本和难度。
 
问题:2.1   请围绕“论网络虚拟化技术在企业网络中的设计与应用”论题,依次对以下三个方面进行论述。
1.简要论述网络虚拟化技术及其在企业网络中的应用需求和必要性。
2.详细叙述你参与设计和实施的虚拟化企业网络规划与设计方案,包括项目整体规划、网络拓扑、硬件设备及软件选型以及工程的预算与造价等。
3.结合你所参与实施的项目,分析在企业网络中使用网络虚拟化技术的优缺点
 
 
 

   知识点讲解    
   · 交换机    · 路由器    · 存储系统    · 基础设施    · 实体    · 维护    · 虚拟化技术
 
       交换机
        机架式交换机是一种插槽式的交换机,这种交换机扩展性较好,可支持不同的网络类型,如以太网、快速以太网、千兆位以太网、ATM、令牌环及FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)等,但价格较贵。固定配置式带扩展槽交换机是一种有固定端口数并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以支持其他类型的网络,价格居中。固定配置式不带扩展槽交换机仅支持一种类型的网络,但价格最便宜。
        交换机的性能指标主要有机架插槽数、扩展槽数、最大可堆叠数、最小/最大端口数、支持的网络类型、背板吞吐量、缓冲区大小、最大物理地址表大小、最大电源数、支持协议和标准、支持第3层交换、支持多层(4~7层)交换、支持多协议路由、支持路由缓存、支持网管类型、支持端口镜像、服务质量(Quality of Service,QoS)、支持基于策略的第2层交换、每端口最大优先级队列数、支持最小/最大带宽分配、冗余、热交换组件、负载均衡等。
 
       路由器
        路由器是计算机网络中重要的一个环节,分为模块化和非模块化两种类型。模块化结构的路由器的扩展性好,支持多种端口类型(如以太网接口、快速以太网接口、高速串行口等),并且各种端口的数量一般是可选的,但价格通常比较昂贵。固定配置的路由器扩展性差,只能用于固定类型和数量的端口,但价格低廉。
        在选择路由器产品时,应多从技术角度来考虑,如可延展性、路由协议互操作性、广域数据服务支持、内部ATM支持、SAN集成能力等。另外,选择路由器还应遵循标准化原则、技术简单性原则、环境适应性原则、可管理性原则和容错冗余性原则等。特别是对于高端路由器,还应该更多地考虑是否和如何适应骨干网对网络高可靠性、接口高扩展性以及路由查找和数据转发的高性能要求。高可靠性、高扩展性和高性能的“三高”特性是高端路由器区别于中、低端路由器的关键所在。从技术性能上考察路由器产品,一般要考察路由器的容量、每秒钟能处理多少数据包、能否被集群等性能问题,还要注意路由器是否能够提供增值服务和其他各种服务。另外,在安装、调试、检修、维护或扩展网络的过程中,免不了要给网络中增减设备,也就是说可能会要插拔网络部件。那么路由器能否支持带电插拔,也是路由器产品应该考察的一个重要性能指标。
        总的来说,路由器的主要性能指标有设备吞吐量、端口吞吐量、全双工线速转发能力、背靠背帧数、路由表能力、背板能力、丢包率、时延、时延抖动、虚拟专用网支持能力、内部时钟精度、队列管理机制、端口硬件队列数、分类业务带宽保证、资源预留、区分服务、CIR、冗余、热插拔组件、路由器冗余协议、基于Web的管理、网管类型、带外网管支持、网管粒度、计费能力、分组语音支持方式、协议支持、语音压缩能力、端口密度、信令支持等。
 
       存储系统
               存储器的层次结构
               计算机的三层存储体系结构如下图所示。
               
               存储器层次结构示意框图
               三层存储结构是高速缓存(Cache)、主存储器(Main Memory,MM)和辅助存储器(外存储器)。若将CPU内部寄存器也看作存储器的一个层次,那么存储器的层次分为4层。若有些计算机没有高速缓存,那么存储器的层次分为两层,即只有主存和辅存。
               存储器的分类
               1)按位置分类
               存储器按位置分类,可分为内存和外存。
               (1)内存(主存):用来存储当前运行所需要的程序和数据,速度快,容量小。
               (2)外存(辅存):用来存储目前不参与运行的数据,容量大但速度慢。
               2)按材料分类
               存储器按材料分类,可分为磁存储器、半导体存储器和光存储器。
               (1)磁存储器:用磁性介质做成的,如磁芯、磁泡、磁盘、磁带等。
               (2)半导体存储器:根据所用元件又可分为双极型和MOS型;根据是否需要刷新又可分为静态和动态两类。
               (3)光存储器:由光学、电学和机械部件等组成,如光盘存储器。
               3)按工作方式分类
               存储器按工作方式分类,可分为读写存储器和只读存储器。
               (1)读写存储器:既能读取数据也能存入数据的存储器。
               (2)只读存储器:根据数据写入方式,又可细分为固定只读存储器、可编程只读存储器、可擦除可编程只读存储器、电擦除可编程只读存储器和闪速存储器。
               4)按访问方式分类
               存储器按访问方式分类,可分为按地址访问的存储器和按内容访问的存储器。
               5)按寻址方式分类
               存储器按寻址方式分类,可分为随机存储器、顺序存储器和直接存取存储器。
               (1)随机存储器(RandomAccessMemory,RAM):这种存储器可对任何存储单元存入或读取数据,访问任何一个存储单元所需时间都是相同的。
               (2)顺序存储器(SequentiallyAddressedMemory,SAM):访问数据所需时fi间与数据所在存储位置有关,磁带是典型的顺序存储器。
               (3)直接存取存储器(DirectAddressedMemory,DAM):采用介于随机存取和顺序存取之间的一种寻址方式。磁盘是一种直接存取控制器,它对磁道的寻址是随机的,而在一个磁道内,则是顺序寻址。
               相联存储器
               相联存储器是一种按内容访问的存储器。其工作原理是把数据或数据的某一部分作为关键字,将该关键字与存储器中的每一单元进行比较,找出存储器中所有与关键字相同的数据字。
               高速缓冲存储器(可简称为高速缓存或缓存)可用在相联存储器中,在虚拟存储器中用来作段表、页表或块表存储器,还可以用在数据库和知识库中。
               高速缓存
               高速缓存(Cache)是位于CPU和主存之间的高速存储子系统。采用高速缓存的主要目的是提高存储器的平均访问速度,使存储器的速度与CPU的速度相匹配。Cache的存在对程序员是透明的。其地址变换和数据块的替换算法均由硬件实现。通常Cache被集成到CPU内,以提高访问速度,其主要特点是容量小、速度快、成本高。
               1)Cache的组成
               Cache的组成如下图所示。Cache由两部分组成,即控制部分和缓存部分。缓存部分用来存放主存的部分复制信息。控制部分的功能是:判断CPU要访问的信息是否在Cache中,若在即为命中,若不在则没有命中。命中时直接对Cache寻址;未命中时,要按照替换原则,决定主存的一块信息放到Cache的哪一块里面。
               
               高速缓存的组成框图
               2)Cache中的地址映像方法
               因为处理机访问都是按主存地址访问的,而应从Cache中读写信息,因此这就需要地址映像,即把主存中的地址映射成Cache中的地址。地址映像的方法有3种,即直接映像、全相联映像和组相联映像。
               (1)直接映像就是主存的块与Cache中块的对应关系是固定的。主存中的块只能存放在Cache的相同块号中。因此,只要主存地址中的主存区号与Cache中的主存区号相同,则表明访问Cache命中。一旦命中,以主存地址中的区内块号立即可得到要访问的Cache中的块。这种方式的优点是地址变换很简单,缺点是灵活性差。
               (2)全相联映像允许主存的任一块可以调入Cache的任何一块的空间中。在地址变换时,利用主存地址高位表示的主存块号与Cache中的主存块号进行比较,若相同则为命中。这种方式的优点是主存的块调入Cache的位置不受限制,十分灵活;其缺点是无法从主存块号中直接获得Cache的块号,变换比较复杂,速度比较慢。
               (3)组相联映像是前面两种方式的折中。具体做法是将Cache中的块再分成组。组相联映像就是规定组采用直接映像方式而块采用全相联映像方式。这种方式下,通过直接映像方式来决定组号,在一组内再用全映像方式来决定Cache中的块号。由主存地址高位决定主存区号,与Cache中区号比较可决定是否命中。主存后面的地址即为组号,但组块号要根据全相联映像方式,由记录可以决定组内块号。
               3)替换算法
               选择替换算法的目标是使Cache获得最高的命中率。常用的替换算法有以下几种。
               (1)随机替换(RAND)算法:用随机数发生器产生一个要替换的块号,将该块替换出去。
               (2)先进先出(FIFO)算法:将最先进入的Cache信息块替换出去。
               (3)近期最少使用(LRU)算法:将近期最少使用的Cache中的信息块替换出去。这种算法比先进先出算法要好些,但此法也不能保证过去不常用的将来也不常用。
               (4)优化替换(OPT)算法:先执行一次程序,统计Cache的替换情况。有了这样的先验信息,在第二次执行该程序时便可以用最有效的方式来替换,达到最优的目的。
               4)Cache的性能分析
               若H为Cache的命中率,tc为Cache的存取时间,tm为主存的访问时间,则Cache的等效访问时间ta
               ta=Htc+(1-H)tm
               使用Cache比不使用Cache的CPU访问存储器的速度提高的倍数r可以用下式求得,即
               
               虚拟存储器
               虚拟存储器是由主存、辅存、存储管理单元及操作系统中存储管理软件组成的存储系统。程序员使用该存储系统时,可以使用的内存空间远远大于主存的物理空间,但实际上并不存在那么大的主存,故称其为虚拟存储器。虚拟存储器的空间大小取决于计算机的访存能力而不是实际外存的大小,实际存储空间可以小于虚拟地址空间。从程序员的角度看,外存被看作逻辑存储空间,访问的地址是一个逻辑地址(虚地址),虚拟存储器使存储系统既具有相当于外存的容量又有接近于主存的访问速度。
               虚拟存储器的访问也涉及虚地址与实地址的映像、替换算法等,这与Cache中的类似。前面讲的地址映像以块为单位,而在虚拟存储器中,地址映像以页为单位。设计虚拟存储系统需考虑的指标是主存空间利用率和主存的命中率。按存储映像算法,可将虚拟存储器的管理方式分为以下3种。
               (1)页式虚拟存储器。以页为信息传送单位的虚拟存储器。为实现页式管理,须建立实页与虚页间的关系表,称为页表;在页表及变换软件的控制下,可将程序的虚拟地址变换为内存的实地址。页式虚拟存储器的优点是:页表硬件少,查表速度快;主存零头少。页式虚拟存储器的缺点是:分页无逻辑意义,不利于存储保护。
               (2)段式虚拟存储器。以程序的逻辑结构形成的段作为主存分配依据的一种管理方法。为实现段式管理,须建立段表;在段地址变换机构及软件的控制下,可将程序的虚拟地址变换为主存的实地址。段式虚拟存储器的优点是:段的界线分明;支持程序的模块化设计;易于对程序段的编译、修改和保护;便于多道程序的共享。段式虚拟存储器的主要缺点是:主存利用率不高,查表速度慢。
               (3)段页式虚拟存储器。这是将段式虚拟存储器和页式虚拟存储器结合的一种管理方式。在这种虚拟存储器中,程序按逻辑结构分段,每一段再分成若干大小固定的页。程序的调入调出是按页进行的,而程序又可按段实现保护。这种管理方式兼有两者的优点,但地址变换速度比较慢。
               外存储器
               外存储器用来存放暂时不用的程序和数据,并且以文件的形式存储。CPU不能直接访问外存中的程序和数据,将其以文件为单位调入主存后方可访问。外存由磁表面存储器(如磁盘、磁带)及光盘存储器构成。
               1)磁盘存储器
               (1)磁盘存储器的构成。磁盘存储器由盘片、驱动器、控制器和接口组成。盘片用来存储信息;驱动器用于驱动磁头沿盘面径向运动以寻找目标磁道位置,驱动盘片以额定速率稳定旋转,并且控制数据的写入和读出;控制器接收主机发来的命令,将它转换成磁盘驱动器的控制命令,并实现主机和驱动器之间数据格式的转换及数据传送,以控制驱动器的读写操作;接口是主机和磁盘存储器之间的连接逻辑。
               (2)磁盘存储器的种类。根据所用材质的不同,磁盘存储器分为软盘和硬盘。
               ①软盘。为了正确存储信息,将盘片划成许多同心圆,称为磁道,从外到里编号,最外一圈为0道,往内道号依次增加。沿径向的单位距离的磁道数称为道密度,单位为tpi。将一个磁道沿圆周等分为若干段,每段称为一个扇段或扇区,每个扇区内可存放一个固定长度的数据块。磁道上单位距离可记录的比特数称为位密度,单位为bpi。因为每条磁道上的扇区数相同,而每个扇区的大小又一样,所以每个磁道都记录同样多的信息。又因为里圈磁道的圆周比外圈磁道的圆周小,所以里圈磁道的位密度要比外圈磁道的位密度高。最内圈的位密度称为最大位密度。
               磁盘容量有两种指标:一种是非格式化容量,它是指一个磁盘所能存储的总位数;另一种是格式化容量,它是指各扇区中数据区容量的总和。计算公式分别为:
               非格式化容量=面数×(磁道数/面)×内圆周长×最大位密度
               格式化容量=面数×(磁道数/面)×(扇区数/道)×(字节数/扇区)
               ②硬盘。按盘片是否固定、磁头是否移动等指标,硬盘可分为移动磁头固定盘片的磁盘存储器、固定磁头的磁盘存储器、移动磁头可换盘片的磁盘存储器和温彻斯特磁盘存储器(简称温盘)。一个硬盘驱动器内可装多个盘片,组成盘片组,每个盘片都配有一个独立的磁头。所以记录面上相同序号的磁道构成一个圆柱面,其编号与磁道编号相同。文件存储在硬盘上时尽可能放在同一圆柱面上,或者放在相邻柱面上,这样可以缩短寻道时间。
               2)光盘存储器
               (1)光盘存储器的类型。根据性能和用途,可分为只读型光盘、只写一次型光盘和可擦除型光盘。
               (2)光盘存储器的组成及特点。光盘存储器由光学、电学和机械部件等组成。特点是:记录密度高;存储容量大;采用非接触式读写信息;信息可长期保存;采用多通道记录时数据传输率可超过200Mb/s;制造成本低;对机械结构的精度要求不高;存取时间较长。
               磁盘阵列技术
               磁盘阵列是由多台磁盘存储器组成的、快速大容量且高可靠的外存子系统。现在常见的廉价冗余磁盘阵列(Redundant Array of Inexpensive Disks,RAID),就是一种由多块廉价磁盘构成的冗余阵列。虽然RAID包含多块磁盘,但是在操作系统下是作为一个独立的大型存储设备出现的。RAID技术分为几种不同的等级,分别可以提供不同的速度、安全性和性价比,如下表所示。
               
               廉价冗余磁盘阵列(RAID)
 
       基础设施
        基础设施是指包括机房供配电系统、机房UPS系统、机房空调系统、机房弱电系统、机房消防系统等在内的,维持机房安全正常运转,确保机房环境满足信息系统设备运行要求的各类设施。
 
       实体
        从上表中可见,在E-R模型中实体用矩形表示,通常矩形框内写明实体名。实体是现实世界中可以区别于其他对象的“事件”或“物体”。例如,企业中的每个人都是一个实体。每个实体由一组特性(属性)来表示,其中的某一部分属性可以唯一标识实体,如职工号。实体集是具有相同属性的实体集合,例如,学校所有教师具有相同的属性,因此教师的集合可以定义为一个实体集;学生具有相同的属性,因此学生的集合可以定义为另一个实体集。
 
       维护
        维护阶段是软件生存期中时间最长的阶段。软件一旦交付正式投入运行后便进入软件维护阶段。该阶段的关键任务是通过各种必要的维护活动使系统持久地满足用户的需要。每一项维护活动都应该准确地记录下来,作为正式的文档资料加以保存。
 
       虚拟化技术
        虚拟化或虚拟技术(Virtualization)是一种资源管理技术,是将计算机的各种实体资源(CPU、内存、磁盘空间、网络适配器等)予以抽象、转换后呈现出来,并可供分割、组合为一个或多个电脑配置环境。云计算中的虚拟化往往指的是系统虚拟化。
        系统虚拟化是指将一台物理计算机系统虚拟化为一台或多台虚拟计算机系统。每个虚拟计算机系统(简称虚拟机)都拥有自己的虚拟硬件(如CPU、内存和设备等),来提供一个独立的虚拟机执行环境,被称为虚拟机监控器(Virtual Machine Monitor,VMM)。虚拟机基本结构如下图所示。
        
        虚拟机结构示意图
        当前主流的虚拟化技术实现结构可以分为三类:Hypervisor模型、宿主模型和混合模型。在Hypervisor模型中,VMM可以看作是一个扩充了虚拟化功能的操作系统,对底层硬件提供物理资源的管理功能,对上层的客户机操作系统提供虚拟环境的创建和管理功能。宿主模型中,VMM作为宿主操作系统独立的内核模块。物理资源由宿主机操作系统管理,VMM提供虚拟化管理。宿主模型和Hypervisor模型的优缺点恰好相反。宿主模型的最大优点是可以充分利用现有操作系统的设备驱动程序以及其他功能,缺点是虚拟化效率较低,安全性取决于宿主操作系统。而Hypervisor模型虚拟化效率高、安全,但是需要自行开发设备驱动和其他一些功能。混合模型集成了上述两类模型的优点。混合模型中,VMM让出大部分I/O设备的控制权,将它们交由一个运行在特权虚拟机中的特权操作系统来控制。因此,混合模型下CPU和内存的虚拟化由VMM负责,而I/O虚拟化由VMM和特权操作系统共同合作完成。
   题号导航      2019年下半年 网络规划设计师 下午试卷 论文   本试卷我的完整做题情况  
1 /
2 /
 
第2题    在手机中做本题