免费智能真题库 > 历年试卷 > 软件设计师 > 2011年下半年 软件设计师 上午试卷 综合知识
  第9题      
  知识点:   加密技术和认证技术   认证   认证中心   数字签名   数字证书
  关键词:   公钥   数字签名   数字证书        章/节:   网络与信息安全知识       

 
认证中心CA获取用户B的数字证书,该证书用(9)作数字签名:从用户B 的数字证书中可以获得B的公钥。
 
 
  A.  CA的公钥
 
  B.  CA的私钥
 
  C.  B的公钥
 
  D.  B的私钥
 
 
 

 
  第8题    2023年上半年  
   56%
PKI体系中,由SSL/TSL实现HTTPS应用。浏览器和服务器之间用于加密HTTP消息的方式是(8)。如果服务器证书被撇销那么所产生的后果..
  第9题    2012年上半年  
   31%
IIS6.0支持的身份验证安全机制有4种验证方法,其中安全级别最高的验证方法是(9)。
  第8题    2009年上半年  
   40%
网络安全包含了网络信息的可用性、保密性、完整性和网络通信对象的真实性。其中,数字签名是对()的保护。
   知识点讲解    
   · 加密技术和认证技术    · 认证    · 认证中心    · 数字签名    · 数字证书
 
       加密技术和认证技术
               加密技术
               1)加密技术概述
               加密技术是最常用的安全保密手段,数据加密技术的关键在于加密/解密算法和密钥管理。加密技术包括两个元素,即算法和密钥。数据加密的基本过程就是对原来为明文的文件或数据按某种加密算法进行处理,使其成为不可读的一段代码,通常称为"密文"。"密文"只能在输入相应的密钥之后才能显示出原来的内容,通过这样的途径达到保护数据不被窃取。
               数据加密和解密是一对逆过程。数据加密是用加密算法E和加密密钥K1,将明文P变换成密文C,记为
               C=EK1(P)
               数据解密是数据加密的逆过程,是用解密算法D和解密密钥K2将密文C变换成明文P,记为
               P=DK2(C)
               数据加密技术可分成3类,即对称加密、非对称加密和不可逆加密。
               (1)对称加密技术。对称加密的体制模型如下图所示。
               
               对称加密的体制模型
               常用的对称加密算法有以下几个。
               .数据加密标准(Digital Encryption Standard,DES)算法。
               .三重DES(3DES或称TDES)。
               .RC-5(Rivest Cipher 5)。
               .国际数据加密算法(International Data Encryption Algorithm,IDEA)。
               (2)非对称加密技术。与对称加密算法不同,非对称加密算法需要两个密钥,即公开密钥(即公钥)和私有密钥(即私钥)。这里的"公钥"是指可以对外公布的,"私钥"只能由持有人知道。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,则只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法称为非对称加密算法。
               非对称加密有两个不同的体制,如下图所示。
               
               非对称加密的体制模型
               非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其他方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。
               非对称加密算法的保密性能好,它消除了最终用户交换密钥的需要,但加密和解密花费时间长、速度慢,不适合对文件加密,而只适用于对少量数据进行加密。
               2)密钥管理
               密钥管理主要是指密钥对的安全管理,包括密钥产生、密钥备份和恢复、密钥更新以及多密钥管理。
               认证技术
               1)认证技术概述
               认证技术主要解决网络通信过程中通信双方的身份认证。认证的过程涉及加密和密钥交换。通常,加密可使用对称加密、不对称加密及两种加密方法的混合方法。认证一般有账户名/口令认证、使用摘要算法认证、基于PKI(Public Key Infrastructure,公开密钥体系)的认证等几种方法。一个有效的PKI系统必须是安全的和透明的,用户在获得加密和数字签名服务时,不需要详细了解PKI的内部运行机制。
               PKI是一种遵循既定标准的密钥管理平台,它能够为所有网络应用提供加密和数字签名等密码服务及必需的密钥和证书管理体系。简单地说,PKI是通过使用公开密钥技术和数字证书来确保系统信息安全并负责验证数字证书持有者身份的一种体系。PKI技术是安全信息技术的核心,也是电子商务的关键和基础技术。PKI的基础技术包括加密、数字签名、数据完整性机制、数字信封、双重数字签名等。完整的PKI系统必须具有权威认证机构(CA)、数字证书库、密钥备份及恢复系统、证书作废系统、应用接口(API)等基本构成部分。
               2)哈希函数与信息摘要
               Hash(哈希)函数(又称散列函数)提供了这样一种计算过程:输入一个长度不固定的字符串,返回一串定长度的字符串(又称Hash值)。单向Hash函数用于产生信息摘要。
               信息摘要简要地描述了一份较长的信息或文件,它可以被看作一份长文件的"数字指纹"。信息摘要用于创建数字签名。
               3)数字签名
               数字签名是通过一个单向散列函数对要传送的报文进行处理得到的,用以认证报文来源并核实报文是否发生变化的一个字母数字串。数字签名可以解决否认、伪造、篡改及冒充等问题,应用范围十分广泛,如加密信件、商务信函、订货购买系统、远程金融交易、自动模式处理等。
               数字签名和数字加密的过程虽然都使用公开密钥体系,但实现的过程正好相反,使用的密钥对也不同。数字签名使用的是发送方的密钥对,发送方用自己的私有密钥进行加密,接收方用发送方的公开密钥进行解密,这是一个一对多的关系,任何拥有发送方公开密钥的人都可以验证数字签名的正确性。数字加密则使用的是接收方的密钥对,这是多对一的关系,任何知道接收方公开密钥的人都可以向接收方发送加密信息,只有唯一拥有接收方私有密钥的人才能对信息解密。另外,数字签名只采用了非对称密钥加密算法,它能保证发送信息的完整性、身份认证和不可否认性,而数字加密则采用了对称密钥加密算法和非对称密钥加密算法相结合的方法,它能保证发送信息的保密性。
               4)SSL协议
               SSL(Secure Sockets Layer)是网景(Netscape)公司提出的基于Web应用的安全协议,又叫安全套接层协议。
               SSL协议主要提供三方面的服务:用户和服务器的合法性认证;加密数据以隐藏被传送的数据;保护数据的完整性,目的是在两个通信应用程序之间提供私密性和可靠性。对于电子商务应用来说,使用SSL可保证信息的真实性、完整性和保密性。
               5)数字时间戳技术
               数字时间戳技术是数字签名技术的一种变种。数字时间戳服务(Digital Time-stamp Service,DTS)是网上电子商务提供的安全服务项目之一,能提供电子文件的日期和时间信息的安全保护。
               时间戳(Time-stamp)是一个经加密后形成的凭证文档,它包括以下3个部分。
               .需加时间戳的文件的摘要。
               .DTS收到文件的日期和时间。
               .DTS的数字签名。
               一般来说,时间戳产生的过程为:用户首先将需要时间戳的文件用Hash编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。
 
       认证
        认证又分为实体认证和消息认证两种。实体认证是识别通信对方的身份,防止假冒,可以使用数字签名的方法。消息认证是验证消息在传送或存储过程中有没有被篡改,通常使用报文摘要的方法。
               基于共享密钥的认证
               如果通信双方有一个共享的密钥,则可以确认对方的真实身份。这种算法依赖于一个双方都信赖的密钥分发中心(Key Distribution Center,KDC),如下图所示,其中的A和B分别代表发送者和接收者,KAKB分别表示A、B与KDC之间的共享密钥。
               
               基于共享密钥的认证协议
               认证过程如下:A向KDC发出消息{A,KA(B,KS)},说明自己要与B通信,并指定了与B会话的密钥KS。注意,这个消息中的一部分(B,KS)是用KA加密的,所以第三者不能了解消息的内容。KDC知道了A的意图后就构造了一个消息{KB(A,KS)}发给B。B用KB解密后就得到了A和KS,然后就可以与A用KS会话了。
               然而,主动攻击者对这种认证方式可能进行重放攻击。例如A代表雇主,B代表银行。第三者C为A工作,通过银行转账取得报酬。如果C为A工作了一次,得到了一次报酬,并偷听和复制了A和B之间就转账问题交换的报文,那么贪婪的C就可以按照原来的次序向银行重发报文2,冒充A与B之间的会话,以便得到第二次、第三次……报酬。在重放攻击中攻击者不需要知道会话密钥KS,只要能猜测密文的内容对自己有利或是无利就可以达到攻击的目的。
               基于公钥的认证
               这种认证协议如下图所示。A向B发出EB(A,RA),该报文用B的公钥加密。B返回EARARBKS),用A的公钥加密。这两个报文中分别有A和B指定的随机数RARB,因此能排除重放的可能性。通信双方都用对方的公钥加密,用各自的私钥解密,所以应答比较简单。其中的KS是B指定的会话键。这个协议的缺陷是假定双方都知道对方的公钥。
               
               基于公钥的认证协议
 
       认证中心
        CA是电子商务体系中的核心环节,是电子交易中信赖的基础。它通过自身的注册审核体系,检查核实进行证书申请的用户身份和各项相关信息,使网上交易的用户属性客观真实性,与证书的真实性一致。认证中心作为权威的、可信赖的、公正的第三方机构,专门负责发放(给个人、计算机设备和组织机构)并管理所有参与网上交易的实体所需的数字证书,并为其使用证书的一切行为提供信誉的担保。但是,CA本身并不涉及商务数据加密、订单认证过程以及线路安全。
        概括地说,CA的功能有:证书发放、证书更新、证书撤销和证书验证。CA的核心功能就是发放和管理数字证书,具体描述如下:
        (1)接收验证最终用户数字证书的申请。
        (2)确定是否接受最终用户数字证书的申请——证书的审批。
        (3)向申请者颁发或拒绝颁发数字证书。
        (4)接收、处理最终用户的数字证书更新请求——证书的更新。
        (5)接收最终用户数字证书的查询、撤销。
        (6)产生和发布证书废止列表(CRL),验证证书状态。
        (7)数字证书的归档。
        (8)密钥归档。
        (9)历史数据归档。
        通常CA中心会采用“统一建设,分级管理”的原则,分为多层结构进行建设和管理,即统一建立注册中心(Registration Authority, RA)系统,各地区以及各行业可以根据具体情况设置不同层次的下级RA中心或本地注册中心(Local Registration Authority, LRA)。各级下级RA机构统一接受CA中心的管理和审计,证书用户可通过LRA业务受理点完成证书业务办理。RA系统负责本地管理员。用户的证书申请审核,并为LRA系统在各分支机构的分布建设提供策略支撑,完成CA中心的证书注册服务的集中处理。
 
       数字签名
        传统商务活动中,我们通过手写签名达到确认信息的目的。电子商务活动中,交易双方互不见面,可以通过数字签名确认信息。数字签名技术有效解决了电子商务交易活动中信息的完整性和不可抵赖性问题。
               数字摘要
                      数字摘要的基本概念
                      数字摘要是利用哈希函数对原文信息进行运算后生成的一段固定长度的信息串,该信息串被称为数字摘要。产生数字摘要的哈希算法具有单向性和唯一性的特点。所谓单向性,也称为不可逆性,是指利用哈希算法生成的数字摘要,无法再恢复出原文;唯一性是指相同信息生成的数字摘要一定相同,不同信息生成的数字摘要一定不同。这一特征类似于人类的指纹特征,因此数字摘要也被称为数字指纹。
                      数字摘要的使用过程
                      数字摘要具有指纹特征,因此可以通过对比两个信息的数字摘要是否相同来判断信息是否被篡改过,从而验证信息的完整性。
                      数字摘要的使用过程如下图所示。
                      
                      数字摘要的使用过程
                      (1)发送方将原文用哈希(Hash)算法生成数字摘要1;
                      (2)发送方将原文同数字摘要1一起发送给接收方;
                      (3)接收方收到原文后用同样的哈希(Hash)算法对原文进行运算,生成新的数字摘要2;
                      (4)接收方将收到的数字摘要1与新生成的数字摘要2进行对比,若相同,说明原文在传输的过程中没有被篡改,否则说明原文信息发生了变化。
                      数字摘要算法
                      哈希(Hash)算法是实现数字摘要的核心技术。数字摘要所产生的信息串的长度和所采用的哈希算法有直接关系。目前广泛应用的哈希算法有MD5算法和SHA-1算法。
                      MD5算法的全称是“Message-Digest Alogrithm 5”,诞生于1991年,由国际著名密码学家、RSA算法的创始人Ron Rivest设计发明,经MD2、MD3和MD4发展而来。MD5算法生成的信息摘要的长度为128位。
                      SHA算法的全称是“Secure Hash Alogrithm”,诞生于1993年,由美国国家标准技术研究院(NIST)与美国国家安全局(NSA)设计。SHA(后来被称作SHA-0)于1995年被SHA-1替代,之后又出现了SHA-224、SHA-256、SHA-384和SHA-512等,这些被统称为SHA-2系列算法。SHA-1算法生成的信息摘要的长度为160位,而SHA-2系列算法生成的信息摘要的长度则有256位(SHA-256)、384位(SHA-384)、512位(SHA-512)等。与MD5算法相比,SHA算法具有更高的安全性。
                      MD5算法和SHA算法在实际中有着广泛的应用。与公钥技术结合,生成数字签名。目前几乎主要的信息安全协议中都使用了SHA-1或MD5算法,包括SSL、TLS、PGP、SSH、S/MIME和IPSec等。UNIX系统及不少论坛/社区系统的口令都通过MD5算法处理后保存,确保口令的安全性。
                      需要说明的是,2004年8月,在美国加州圣芭芭拉召开的国际密码学会议上,我国山东大学王小云教授宣布了她及她的研究小组对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。2005年2月,王小云教授又破解了另一国际密码算法SHA-1。这为国际密码学研究提出了新的课题。
               数字签名
                      数字签名的基本概念
                      在ISO 7498-2标准中,数字签名被定义为:“附加在数据单元上的一些数据,或是对数据单元所做的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。实际上,简单地讲,数字签名就是在网络中传送信息报文时,附加一个特殊的唯一代表发送者个人身份的标记,以起到传统上手写签名或印章确认的作用。
                      数字签名建立在数字摘要的基础上,结合公钥加密技术实现。发送者应用自己的私钥对数字摘要进行加密,即生成数字签名。由于发送者的私钥仅为发送者本人所有,所以附加了数字签名的信息能够确认消息发送者的身份,也防止了发送者对本人所发送信息的抵赖行为。同时通过数字摘要技术,接收者可以验证信息是否发生了改变,从而确定信息的完整性。
                      数字签名的使用过程
                      数字签名的使用过程包括签名和验证两部分,如下图所示。
                      
                      数字签名的使用过程
                      (1)发送方将原文用哈希(Hash)算法生成数字摘要Z;
                      (2)发送方将数字摘要Z用自己的私钥加密;
                      (3)发送方将加密后的数字摘要Z(即数字签名)同原文一起发送给接收方;
                      (4)接收方用发送方的公钥解密数字签名,得到数字摘要Z;
                      (5)接收方对接收到的原文用同样的哈希(Hash)算法生成数字摘要Z′;
                      (6)比较Z和Z′,若二者相同,说明信息完整且发送者身份是真实的。
                      由以上过程可以看到,数字签名具有以下两个作用:
                      (1)确认信息的完整性。接收方将原文生成的数字摘要与用接收到的原文生成的新的数字摘要进行对比,相同则说明信息没有改变,不同则说明信息内容发生了变化。因此数字签名能够验证信息是否被修改,从而确定信息的完整性。
                      (2)确认信息发送者的身份,保证发送信息的不可抵赖性。发送者用自己的私钥对数字摘要进行加密,接收者如果能用对应的公钥进行解密,则说明信息一定是由该发送者发送的,从而确认了发送者的身份。此外,由于发送者的私钥是发送者本人拥有(除非丢失、泄露或被窃取),所以发送者不能否认自己曾经发送过的信息。
                      数字签名的种类
                      实现数字签名的基本方法有以下几种。
                      (1)RSA签名。RSA签名是基于RSA算法实现数字签名的方案,ISO/IEC 9796和ANSI X9.30-199X已将RSA作为建议数字签名的标准算法。
                      (2)ElGamal签名。ElGamal签名是专门为签名目的而设计。该机制由T.ElGamal于1985年提出,经修正后,被美国国家标准与技术学会(NIST)作为数字签名标准(Digital Signature Standard,DSS)。
                      RSA签名基于大整数素数分解的困难性,ElGamal签名基于求离散对数的困难性。在RSA签名机制中,明文与密文一一对应,对特定信息报文的数字签名不变化,是一种确定性数字签名。ElGamal签名机制采用非确定性的双钥体制,对同一消息的签名,根据签名算法中随机参数选择的不同而不同,是一种随机式数字签名。
 
       数字证书
        数字证书是各类终端实体和最终用户在网上进行信息交流及商务活动的身份证明,在电子交易的各个环节,交易的各方都需验证对方数字证书的有效性,从而解决相互间的信任问题。
        数字证书采用公钥体制,即利用一对互相匹配的密钥进行加密和解密。每个用户自己设定一个特定的仅为本人所知的私有密钥(私钥),用它进行解密和签名,同时设定一个公共密钥(公钥),并由本人公开,为一组用户所共享,用于加密和验证。公开密钥技术解决了密钥发布的管理问题。一般情况下,证书中还包括密钥的有效时间、发证机构(证书授权中心)的名称及该证书的序列号等信息。数字证书的格式遵循ITUT X.509国际标准。
        用户的数字证书由某个可信的证书发放机构(Certification Authority,CA)建立,并由CA或用户将其放入公共目录中,以供其他用户访问。目录服务器本身并不负责为用户创建数字证书,其作用仅仅是为用户访问数字证书提供方便。
        在X.509标准中,数字证书的一般格式包含的数据域如下。
        (1)版本号:用于区分X.509的不同版本。
        (2)序列号:由同一发行者(CA)发放的每个证书的序列号是唯一的。
        (3)签名算法:签署证书所用的算法及参数。
        (4)发行者:指建立和签署证书的CA的X.509名字。
        (5)有效期:包括证书有效期的起始时间和终止时间。
        (6)主体名:指证书持有者的名称及有关信息。
        (7)公钥:有效的公钥以及其使用方法。
        (8)发行者ID:任选的名字唯一地标识证书的发行者。
        (9)主体ID:任选的名字唯一地标识证书的持有者。
        (10)扩展域:添加的扩充信息。
        (11)认证机构的签名:用CA私钥对证书的签名。
               证书的获取
               CA为用户产生的证书应具有以下特性:
               (1)只要得到CA的公钥,就能由此得到CA为用户签署的公钥。
               (2)除CA外,其他任何人员都不能以不被察觉的方式修改证书的内容。
               因为证书是不可伪造的,因此无须对存放证书的目录施加特别的保护。
               如果所有用户都由同一CA签署证书,则这一CA必须取得所有用户的信任。用户证书除了能放在公共目录中供他人访问外,还可以由用户直接把证书转发给其他用户。用户B得到A的证书后,可相信用A的公钥加密的消息不会被他人获悉,还可信任用A的私钥签署的消息不是伪造的。
               如果用户数量很多,仅一个CA负责为所有用户签署证书可能不现实。通常应有多个CA,每个CA为一部分用户发行和签署证书。
               设用户A已从证书发放机构X1处获取了证书,用户B已从X2处获取了证书。如果A不知X2的公钥,他虽然能读取B的证书,但却无法验证用户B证书中X2的签名,因此B的证书对A来说是没有用处的。然而,如果两个证书发放机构X1和X2彼此间已经安全地交换了公开密钥,则A可通过以下过程获取B的公开密钥:
               (1)A从目录中获取由X1签署的X2的证书X1《X2》,因为A知道X1的公开密钥,所以能验证X2的证书,并从中得到X2的公开密钥。
               (2)A再从目录中获取由X2签署的B的证书X2《B》,并由X2的公开密钥对此加以验证,然后从中得到B的公开密钥。
               在以上过程中,A是通过一个证书链来获取B的公开密钥的,证书链可表示为
               X1《X2》X2《B》
               类似地,B能通过相反的证书链获取A的公开密钥,表示为
               X2《X1》X1《A》
               以上证书链中只涉及两个证书。同样,有N个证书的证书链可表示为
               X1《X2X2《X3》…XN《B》
               此时,任意两个相邻的CAXi和CAXi+1已彼此间为对方建立了证书,对每一个CA来说,由其他CA为这一CA建立的所有证书都应存放于目录中,并使得用户知道所有证书相互之间的连接关系,从而可获取另一用户的公钥证书。X.509建议将所有的CA以层次结构组织起来,用户A可从目录中得到相应的证书以建立到B的以下证书链:
               X《W》W《V》V《U》U《Y》Y《Z》Z《B》
               并通过该证书链获取B的公开密钥。
               类似地,B可建立以下证书链以获取A的公开密钥:
               X《W》W《V》V《U》U《Y》Y《Z》Z《A》
               证书的吊销
               从证书的格式上可以看到,每个证书都有一个有效期,然而有些证书还未到截止日期就会被发放该证书的CA吊销,这可能是由于用户的私钥已被泄漏,或者该用户不再由该CA来认证,或者CA为该用户签署证书的私钥已经泄漏。为此,每个CA还必须维护一个证书吊销列表(Certificate Revocation List,CRL),其中存放所有未到期而被提前吊销的证书,包括该CA发放给用户和发放给其他CA的证书。CRL还必须由该CA签字,然后存放于目录中以供他人查询。
               CRL中的数据域包括发行者CA的名称、建立CRL的日期、计划公布下一CRL的日期以及每个被吊销的证书数据域。被吊销的证书数据域包括该证书的序列号和被吊销的日期。对一个CA来说,它发放的每个证书的序列号是唯一的,所以可用序列号来识别每个证书。
               因此,每个用户收到他人消息中的证书时都必须通过目录检查这一证书是否已经被吊销,为避免搜索目录引起的延迟以及因此而增加的费用,用户自己也可维护一个有效证书和被吊销证书的局部缓存区。
   题号导航      2011年下半年 软件设计师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第9题    在手机中做本题