免费智能真题库 > 历年试卷 > 软件设计师 > 2022年下半年 软件设计师 下午试卷 案例
  第1题      
  知识点:   数据流图   结构化方法   数据分析   数据流   数据维护   维护   异常   准确性

 
随着新能源车数量的迅猛增长,全国各地电动汽车配套充电桩急速增长,同时也带来了充电桩计量准确性的问题。充电桩都需要配备相应的电能计量和电费计费功能,需要对充电计量准确性强制进行检定。现需开发计量检定云端软件,其主要功能是:
(1)数据接收。接收计量装置上报的充电数据,即充电过程中电压、电流、电能等充电监测数据和计量数据(充电监测数据为充电桩监测的数据,计量数据为计量装置计量的数据,以秒为间隔单位),接收计量装置心跳数据,并分别进行存储。
(2)基础数据维护。管理员对充电桩、计量检定装置等基础数据进行维护
(3)数据分析。实现电压、电流、电能数据的对比,进行误差分析,记录充电桩的充电误差,供计量装置检定。系统根据计量检测人员给出的查询和统计条件展示查询统计结果。
(4)充电桩检定。分析充电误差:计量检测人员根据误差分析结果和检定信息记录,对充电桩进行检定,提交检定结果:系统更新充电桩中的检定信息(检定结果和检定时间),并存储于检定记录。
(5)异常告警。检测计量装置心跳,当心跳停止时,向管理员发出告警。
(6)检定信息获取,供其它与充电桩相关的第三方服务查询充电桩中的检定信息。
现采用结构化方法对计量检定云端软件进行分析与设计,获得如图1-1所示的上下文数据流和图1-2所示的0层数据流

 
问题:1.1   (4分)
使用说明中的词语,给出图1-1中的实体E1~E4的名称。?
 
问题:1.2   (5分)
使用说明中的词语,给出图1-2中的数据存储D1~D5的名称。?
 
问题:1.3   (4分)
根据说明中的词语,补充图1-2中缺失的数据流及其起点和终点。
 
问题:1.4   (2分)
根据说明,给出“充电监测与计量数据”数据流的组成。?
 
 
 

   知识点讲解    
   · 数据流图    · 结构化方法    · 数据分析    · 数据流    · 数据维护    · 维护    · 异常    · 准确性
 
       数据流图
        数据流图也称数据流程图(Data Flow Diagram,DFD),它是一种便于用户理解、分析系统数据流程的图形工具。它摆脱了系统的物理内容,精确地在逻辑上描述系统的功能、输入、输出和数据存储等,是系统逻辑模型的重要组成部分。
        1)数据流图的基本图形元素
        数据流图中的基本图形元素包括数据流(Data Flow)、加工(Process)、数据存储(Data Store)和外部实体(Extemal Agent)。其中,数据流、加工和数据存储用于构建软件系统内部的数据处理模型;外部实体表示存在于系统之外的对象,用来帮助用户理解系统数据的来源和去向。
        (1)数据流。
        数据流由一组固定成分的数据组成,表示数据的流向。在DFD中,数据流的流向可以有以下几种:从一个加工流向另一个加工;从加工流向数据存储(写):从数据存储流向加工(读);从外部实体流向加工(输入);从加工流向外部实体(输出)。
        DFD中的每个数据流用一个定义明确的名字表示。除了流向数据存储或从数据存储流出的数据流不必命名外,每个数据流都必须有一个合适的名字,以反映该数据流的含义。值得注意的是,DFD中描述的是数据流,而不是控制流。
        数据流或者由具体的数据属性(也称为数据结构)构成,或者由其他数据流构成。组合数据流是由其他数据流构成的数据流,它们用于在高层的数据流图中组合相似的数据流,以使数据流图更便于阅读。
        (2)加工。
        加工描述了输入数据流到输出数据流之间的变换,也就是输入数据流经过什么处理后变成了输出数据流。每个加工都有一个名字和编号。编号能反映出该加工位于分层DFD中的哪个层次和哪张图中,也能够看出它是哪个加工分解出来的子加工。
        一个加工可以有多个输入数据流和多个输出数据流,但至少有一个输入数据流和一个输出数据流。
        (3)数据存储。
        数据存储用来存储数据。通常,一个流入加工的数据流经过加工处理后就消失了,而它的某些数据(或全部数据)可能被加工成输出数据流,流向其他加工或外部实体。除此之外,在软件系统中还常常要把某些信息保存下来以供以后使用,这时可以使用数据存储。
        每个数据存储都有一个定义明确的名字标识。可以有数据流流入数据存储,表示数据的写入操作;也可以有数据流从数据向数据存储,表示对数据的修改。
        这里要说明的是,DFD中的数据存储在具体实现时可以用文件系统实现,也可以用数据库系统实现。数据存储的存储介质可以是磁盘、磁带或其他存储介质。
        (4)外部实体(外部主体)。
        外部实体是指存在于软件系统之外的人员或组织,它指出系统所需数据的发源地(源)和系统所产生的数据的归宿地(宿)。例如,对于一个考务处理系统而言,考生向系统提供报名单(输入数据流),所以考生是考务处理系统的一个源;而考务处理系统要将考试成绩的统计分析表(输出数据流)传递给考试中心,所以考试中心是该系统的一个宿。
        在许多系统中,某个源和某个宿可以是同一个人员或组织,此时,在DFD中可以用同一个符号表示。考生向系统提供报名单,而系统向考生送出准考证,所以在考务处理系统中,考生既是源又是宿。
        源和宿采用相同的图形符号表示,当数据流从该符号流出时,表示它是源;当数据流流向该符号时,表示它是宿;当两者皆有时,表示它既是源又是宿。
        2)数据流图的扩充符号
        在DFD中,一个加工可以有多个输入数据流和多个输出数据流,此时可以加上一些扩充符号来描述多个数据流之间的关系。
        (1)星号(*)。
        星号表示数据流之间存在"与"关系。如果是输入流则表示所有输入数据流全部到达后才能进行加工处理;如果是输出流则表示加工结束将同时产生所有的输出数据流。
        (2)加号(+)。
        加号表示数据流之间存在"或"关系。如果是输入流则表示其中任何一个输入数据流到达后就能进行加工处理;如果是输入流则表示加工处理的结果是至少产生其中一个输出数据流。
        (3)异或(⊕)。
        异或表示数据流之间存在"互斥"关系。如果是输入流则表示当且仅当其中一个输入流到达后才能进行加工处理;如果是输出流则表示加工处理的结果是仅产生这些输出数据流中的一个。
        3)数据流图的层次结构
        从原理上讲,只要纸足够大,一个软件系统的分析模型就可以画在一张纸上。然而,一个复杂的软件系统可能涉及上百个加工和上百个数据流,甚至更多。如果将它们画在一张图上,则会十分复杂,不易阅读,也不易理解。
        根据自顶向下逐层分解的思想,可以将数据流图按照层次结构来绘制,每张图中的加工个数可大致控制在"7加减2"的范围内,从而构成一套分层数据流图。
        (1)层次结构。
        分层数据流图的顶层只有一张图,其中只有一个加工,代表整个软件系统,该加工描述了软件系统与外界之间的数据流,称为顶层图。
        顶层图中的加工(即系统)经分解后的图称为0层图,也只有一张。处于分层数据流图最底层的图称为底层图,在底层图中,所有的加工不再进行分解。分层数据流图中的其他图称为中间层,其中至少有一个加工(也可以是所有加工)被分解成一张子图。在整套分层数据流图中,凡是不再分解成子图的加工称为基本加工。
        (2)图和加工的编号。
        首先介绍父图和子图的概念。
        如果某图(记为A)中的某一个加工分解成一张子图(记为B),则称A是B的父图,B是A的子图。若父图中有n个加工,则它可以有0一刀张子图,但每张子图只对应一张父图。
        为了方便对图进行管理和查找,可以采用下列方式对DFD中的图和加工编号。
        ①顶层图中只有一个加工(代表整个软件系统),该加工不必编号。
        ②0层图中的加工编号分别为1、2、3--。
        ③子图号就是父图中被分解的加工号。
        ④对于子图中加工的编号,若父图中的加工号为X的加工分解成某一子图,则该子图中的加工编号分别为x.1、x.2、X.3…。
        4)分层数据流图的审查
        在分层数据流图画好后,应该认真检查图中是否存在错误或不合理(不理想)的部分。
        (1)分层数据流图的一致性和完整性。
        ①分层数据流图的一致性。
        a.父图与子图的平衡。
        b.数据守恒。
        c.局部数据存储。
        d.一个加工的输出数据流不能与该加工的输入数据流同名。
        ②分层数据流图的完整性。
        a.每个加工至少有一个输入数据流和一个输出数据流。
        b.在整套分层数据流图中,每个数据存储应至少有一个加工对其进行读操作,另一个加工对其进行写操作。
        c.分层数据流图中的每个数据流和文件都必须命名(除了流入或流出数据存储的数据流),并保持与数据字典一致。
        d.分层数据流图中的每个基本加工都应有一个加工规约。
        (2)构造分层DFD时需要注意的问题。
        ①适当命名。
        a.名字应反映整个对象(如数据流、加工),而不是只反映它的某一部分。
        b.避免使用空洞的、含义不清的名字,如"数据""信息""处理""统计"等。
        c.如果发现某个数据流或加工难以命名,往往是DFD分解不当的征兆,此时应考虑重新分解。
        ②画数据流而不是控制流。
        ③避免一个加工有过多的数据流。
        a.把需要重新分解的某张图的所有子图连接成一张图。
        b.把连接后的图重新划分成几个部分,使各部分之间的联系最小。
        c.重新定义父图,即第b步中的每个部分作为父图中的一个加工。
        d.重新建立各子图,即第b步中的每个部分都是一张子图。
        e.为所有的加工重新命名并编号。
        ④分解尽可能均匀。
        ⑤先考虑确定状态,忽略琐碎的细节。
        ⑥随时准备重画。
        (3)分解的程度。
        在自顶向下画数据流图时,为了便于对分解层数进行把握,可以参照以下几条与分解有关的原则。
        ①7加减2。
        ②分解应自然,概念上应合理、清晰。
        ③只要不影响DFD的易理解性,可适当增加子加工数量,以减少层数。
        ④一般来说,上层分解得快一些(即多分解几个加工),下层分解得慢一些(即少分解几个加工)。
        ⑤分解要均匀。
 
       结构化方法
        结构化方法属于自顶向下的开发方法,其基本思想是“自顶向下,逐步求精”,强调开发方法的结构合理性及所开发软件的结构合理性。结构是指系统内各个组成要素之间的相互联系、相互作用的框架。结构化开发方法提出了一组提高软件结构合理性的准则,如分解与抽象、模块独立性、信息隐蔽等。针对软件生存周期各个不同的阶段,它包括了结构化分析(Structured Analysis, SA)、结构化设计(Structured Design, SD)和结构化程序设计(Structured Programing, SP)等方法。本章后续介绍的分析、设计、测试等内容,都是以结构化方法为基础的。
               结构化方法的基本原则
               为保证系统开发的顺利进行,结构化方法强调遵循以下几个基本原则:
               (1)面向用户的观点。在开发过程中,开发人员应该始终与用户保持联系,从调查研究入手,充分理解用户的信息需求和业务活动,不断地让用户了解工作的进展情况,校准工作方向。
               (2)严格区分工作阶段,每个阶段有明确的任务和应得的成果。
               (3)按照系统的观点,自顶向下地完成系统的开发工作。
               (4)充分考虑变化的情况。在系统设计中,把系统的可变更性放在首位。
               (5)工作成果文献化、文档化。
               结构化分析
               SA方法使用抽象模型的概念,按照软件内部数据传递、变换的关系,自顶向下、逐层分解,直至找到满足功能要求的所有可实现的软件为止。SA方法给出一组帮助系统分析人员产生功能规约的原理与技术。它一般利用图形表达用户需求,使用的手段主要有数据流图、数据字典、结构化语言、判定表及判定树等。
               SA方法的步骤如下:
               (1)分析当前的情况,做出反映当前物理模型的数据流图(Data Flow Diagram, DFD)。
               (2)推导出等价的逻辑模型的DFD。
               (3)设计新的逻辑系统,生成数据字典和基元描述。
               (4)建立人机接口,提出可供选择的目标系统物理模型的DFD。
               (5)确定各种方案的成本和风险等级,据此对各种方案进行分析。
               (6)选择一种方案。
               (7)建立完整的需求规约。
               结构化设计
               SD方法给出一组帮助设计人员在模块层次上区分设计质量的原理与技术。它通常与SA方法衔接起来使用,以数据流图为基础得到软件的模块结构。SD方法尤其适用于变换型结构和事务型结构的目标系统。在设计过程中,它从整个程序的结构出发,利用模块结构图表述程序模块之间的关系。
               SD方法的步骤如下:
               (1)评审和细化数据流图。
               (2)确定数据流图的类型。
               (3)把数据流图映射到软件模块结构上,设计出模块结构的上层。
               (4)基于数据流图逐步分解高层模块,设计中下层模块。
               (5)对模块结构进行优化,得到更为合理的软件结构。
               (6)描述模块接口。
               SD方法的设计原则是:
               (1)使每个模块执行一个功能(坚持功能性内聚)。
               (2)每个模块使用过程语句(或函数方式等)调用其他模块。
               (3)模块间传送的参数作为数据使用。
               (4)模块间共用的信息(如参数等)尽量少。
               结构化方法的缺点
               结构化方法是目前最成熟、应用较广泛的一种工程化方法。当然,这种方法也有不足和局限性:
               (1)开发周期长。一方面使用户在较长的时间内不能得到一个可实际运行的物理系统,另一方面难以适应环境变化。
               (2)早期的结构化方法注重系统功能,兼顾数据结构的方面不多。
               (3)结构化程度较低的系统,在开发初期难于锁定功能要求。
               这些问题在应用中有的已经解决,同时也产生了其他一些方法,例如原型法、面向对象方法等。
 
       数据分析
        数据分析是大数据处理过程中的重要组成部分,是大数据价值体现的核心环节。经典的机器学习方法是最常见的数据智能分析方法,近年来迅速发展的深度学习在某些领域取得了惊人的效果。在应用开发上,也形成了几种主流的大数据处理框架。
        机器学习中算法很多,也有很多不同种类的分类方法,一般分为监督学习和非监督学习(或无监督学习)。其中,监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练,是从标记的训练数据来推断一个功能的机器学习任务。根据训练集中的标识是连续的还是离散的,可以将监督学习分为两类:回归和分类。
        回归是研究一个或一组随机变量对一个或一组属性变量的相依关系的统计分析方法。线性回归模型是假设自变量和因变量满足线性关系。Logistic回归一般用于分类问题,而其本质是线性回归模型,只是在回归的连续值结果上加了一层函数映射。
        分类是机器学习中的一个重要问题,其过程也是从训练集中建立因变量和自变量的映射过程,与回归问题不同的是,分类问题中因变量的取值是离散的,根据因变量的取值范围,可将分类问题分为二分类问题、三分类问题和多分类问题。根据分类采用的策略和思路的不同,分类算法大致包括:基于示例的分类方法,如K最近邻(K-Nearest Neighbor,KNN)方法;基于概率模型的分类方法,如朴素贝叶斯、最大期望算法EM等;基于线性模型的分类方法,如SVM;基于决策模型的分类方法,如C4.5、AdaBoost、随机森林等。
        在实际应用中,缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高,学习模型是为了推断出数据的一些内在结构。因此,根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称为无监督学习。常见的算法有:关联规则挖掘,是从数据背后发现事物之间可能存在的关联或联系。比如数据挖掘领域著名的“啤酒-尿不湿”的故事。K-means算法,基本思想是两个对象的距离越近,其相似度越大;相似度接近的若干对象组成一个簇;算法的目标是从给定数据集中找到紧凑且独立的簇。
        近年来发展起来的深度学习算法是基于原有的神经网络算法发展起来的,包括BP神经网络、深度神经网络。
        BP神经网络是一种反向传播的前馈神经网络,所谓前馈神经网络就是指各神经元分层排列,每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层。所谓反向传播是指从输出层开始沿着相反的方向来逐层调整参数的过程。BP神经网络由输入层、隐含层和输出层组成。
        深度神经网络主要包括卷积神经网络、循环神经网络等,也包括它们的各种改进模型。
        (1)卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,其结构包括输入层、卷积层、池化层、全连接层以及输出层等。该算法在图像处理、模式识别等领域取得了非常好的效果。在CNN的发展过程中,最经典的模型是AlexNet,针对不同的应用需要,又产生了全卷积模型(FCN)、残差神经网络模型(ResNet)、DeepFace等模型结构。
        (2)循环神经网络(Recurrent Neural Network,RNN)是一种人工神经网络,在该网络中,除了层间的连接以外,同层各单元之间连接构成了一个有向图序列,允许它显示一个时间序列的动态时间行为。RNN可以使用它们的内部状态来处理输入序列,这使得它们适用于诸如未分割的、连续的手写识别或语音识别等任务。传统的RNN是很难训练的,往往会出现梯度消失或梯度爆炸等情况,因此又出现了多个扩展版本,如BiRNN、LSTM等。
        随着深度学习的快速发展和应用的普及,开始出现了一些深度学习框架。深度学习框架是一种界面、库或工具,可以使用户在无需深入了解底层算法的细节的情况下,能够更容易、更快速地构建深度学习模型。深度学习框架利用预先构建和优化好的组件集合定义模型,为模型的实现提供了一种清晰而简洁的方法。常见的深度学习框架有:Caffe,是一个广泛使用的开源深度学习框架,支持常用的网络模型,比如Lenet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet等;TensorFlow,是一个使用数据流图进行数值计算的开源软件库,图中的节点表示数学运算,而图边表示节点之间传递的多维数据阵列(又称张量),其为大多数复杂的深度学习模型预先编写好了代码,比如递归神经网络和卷积神经网络,灵活架构使我们能够在一个或多个CPU(以及GPU)上部署深度学习模型;Keras,是一个由Python编写的开源人工神经网络库,可以作为TensorFlow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化,Keras完全模块化并具有可扩展性,并试图简化复杂算法的实现难度。
        随着大数据技术的广泛深入,大数据应用已经形成了庞大的生态系统,很难用一种架构或处理技术覆盖所有应用场景。下文介绍几种当前主流的大数据分布式计算架构。
        Apache Hadoop是用于开发可靠、可伸缩、分布式计算的开源软件,是一套用于在由通用硬件构建的大型集群上运行应用程序的框架。包含的模块有:Hadoop分布式文件系统(HDFS),提供对应用程序数据的高吞吐量访问的分布式文件系统;Hadoop YARN,作业调度和集群资源管理的框架;Hadoop MapReduc,一个用于大型数据集并行处理的基于YARN的系统;Hadoop Ozone,Hadoop的对象存储;Hadoop Submarine,Hadoop的机器学习引擎。
        Apache Spark是加州大学伯克利分校的AMP实验室所开源的类Hadoop MapReduce的通用并行框架。Spark是一个分布式的内存计算框架,是专为大规模数据处理而设计的快速通用的计算引擎。Spark的计算过程保持在内存中,不需要读写HDFS,减少了硬盘读写,提升了计算速度。除了Map和Reduce操作外,Spark还延伸出如filter、flatMap、count、distinct等更丰富的操作。同时通过Spark Streaming支持处理数据流。
        Apache Storm是一个免费的开源分布式实时计算系统,可以可靠地处理无边界的数据流变,可以实现实时处理。Apache Storm速度很快,它是可扩展的,容错的,并且易于设置和操作。Apache Storm应用于实时分析、在线机器学习、连续计算、分布式RPC、ETL等等。Storm的核心是拓扑(Topology),拓扑被提交给集群,由集群中的主控节点分发代码,将任务分配给工作节点执行。
 
       数据流
        数据流由一组固定成分的数据组成,表示数据的流向。在DFD中,数据流的流向可以有以下几种:从一个加工流向另一个加工;从加工流向数据存储(写);从数据存储流向加工(读);从外部实体流向加工(输入);从加工流向外部实体(输出)。
        DFD中的每个数据流用一个定义明确的名字表示。除了流向数据存储或从数据存储流出的数据流不必命名外,每个数据流都必须有一个合适的名字,以反映该数据流的含义。
        数据流或者由具体的数据属性(也称为数据结构)构成,或者由其他数据流构成。组合数据流是由其他数据流构成的数据流,它们用于在高层的数据流图中组合相似的数据流,以使数据流图更便于阅读。
        控制流是对数据流图的补充,采用虚线表示,是对由触发系统功能的事件进行描述。
        另外,一个加工可以有多个输入数据流和多个输出数据流,此时可以加上一些扩充字符符号或图形元素来描述多个数据流之间的关系。如:
        (1)星号(*)。星号表示数据流之间存在“与”关系。如果是输入流则表示所有输入数据流全部到达后才能进行加工处理;如果是输出流则表示加工结束将同时产生所有的输出数据流。
        (2)加号(+)。加号表示数据流之间存在“或”关系。如果是输入流则表示其中任何一个输入数据流到达后就能进行加工处理;如果是输出流则表示加工处理的结果是至少产生其中一个输出数据流。
        (3)异或(⊕)。异或表示数据流之间存在“互斥”关系。如果是输入流则表示当且仅当其中一个输入流到达后才能进行加工处理;如果是输出流则表示加工处理的结果是仅产生这些输出数据流中的一个。
 
       数据维护
        数据维护工作主要是由数据库管理员来负责,主要负责数据库的安全性和完整性以及进行并发性控制。数据库管理员还要负责维护数据库中的数据,当数据库中的数据类型、长度等发生变化时,或者需要添加某个数据项、数据库时,要负责修改相关的数据库、数据字典,并通知有关人员。另外,数据库管理员还要负责定期出版数据字典文件及一些其他数据管理文件,以保留系统运行和修改的轨迹。当系统出现硬件故障并得到排除后,要负责数据库的恢复工作。
        数据维护中还有一项很重要的内容,那就是代码维护。不过代码维护发生的频率相对较小。代码的维护应由代码管理小组进行。变更代码应经过详细讨论,确定之后要用书面形式贯彻。代码维护的困难往往不在于代码本身的变更,而在于新代码的贯彻。为此,除了成立专门的代码管理小组外,各业务部门要指定专人进行代码管理,通过他们贯彻使用新代码。这样做的目的是要明确管理职责,有助于防止和更正错误。
 
       维护
        维护阶段是软件生存期中时间最长的阶段。软件一旦交付正式投入运行后便进入软件维护阶段。该阶段的关键任务是通过各种必要的维护活动使系统持久地满足用户的需要。每一项维护活动都应该准确地记录下来,作为正式的文档资料加以保存。
 
       异常
        异常是一种形式的异常控制流,它一部分是由硬件实现的,一部分是由操作系统实现的。因为它们有一部分是由硬件实现的,所以具体细节将随系统的不同而有所不同。然而,对于每个系统而言,基本的思想都是相同的。
        异常(exception)就是控制流中的突变,用来响应处理器状态中的某些变化。异常可以分为四类:中断(interrupt)、陷阱(trap)、故障(fault)和中止(abort)。下表对这些类别的属性做了小结。
        
        异常的类别
        (1)陷阱。陷阱是有意的异常,是执行一条指令的结果。就像中断处理程序一样,陷阱处理程序将控制返回到下一条指令。陷阱最重要的用途是在用户程序和内核之间提供一个像过程一样的接口,叫做系统调用。
        用户程序经常需要向内核请求服务,例如读一个文件、创建一个新的进程、加载一个新的程序或者中止当前进程。为了允许对这些内核服务的受控的访问,处理器提供了一条特殊的syscall指令,当用户程序想要请求服务n时,可以执行这条指令。执行syscall指令会导致一个到异常处理程序的陷阱,这个处理程序对参数解码,并调用适当的内核程序。
        (2)故障。故障由错误情况引起,它可能被故障处理程序修正。当一个故障发生时,处理器将控制转移给故障处理程序。如果处理程序能够修正这个错误情况,它就将控制返回到故障指令,从而重新执行它。否则,处理程序返回到内核中的abort例程,abort例程会中止引起故障的应用程序。
        (3)中止。中止是不可恢复的致命错误造成的结果,典型的是一些硬件错误,例如DRAM或者SRAM位被损坏时发生的奇偶错误。中止处理程序从不将控制返回给应用程序。处理程序将控制返回给一个abort例程,该例程会中止这个应用程序。
 
       准确性
        准确性是指入侵检测系统能正确地检测出系统入侵活动的能力。当一个入侵检测系统的检测不准确时,它就可能把系统中的合法活动当作入侵行为,或者把入侵行为作为正常行为,这时就出现误报警和漏报警现象,实用的入侵检测系统应具有低的误警率和漏警率。
   题号导航      2022年下半年 软件设计师 下午试卷 案例   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
 
第1题    在手机中做本题