免费智能真题库 > 历年试卷 > 网络工程师 > 2009年上半年 网络工程师 上午试卷 综合知识
  第27题      
  知识点:   内部网关协议   配置路由协议   RIP协议
  关键词:   协议        章/节:   网络互联   因特网与物联网       

 
RIPv2是增强了的RIP协议,下面关于RIPv2的描述中,错误的是(27).
 
 
  A.  使用广播方式来传播路由更新报文
 
  B.  采用了触发更新机制来加速路由收敛
 
  C.  支持可变长子网掩码和无类别域间路由
 
  D.  使用经过散列的口令字来限制路由信息的传播
 
 
 

 
  第29题    2012年下半年  
   37%
某网络拓扑结构如下图所示。

则PC1可能的IP地址为(29),路由器R1的S0口的IP地址为(30),路由器R1和R2之间采用的路由..
  第58题    2009年上半年  
   29%
新交换机出厂时的默认配置是(58)。
  第53题    2016年上半年  
   15%
假设路由表有4个表项如下所示,那么与地址115.120.145.67匹配的表项是(52),与地址115.120.179.92匹配的表项是(53)。
 
  第19题    2018年下半年  
   33%
下列关于OSPF协议的说法中,错误的是( )。
  第24题    2016年上半年  
   29%
OSPF网络被划分为各种区域,其中作为区域之间交换路由信息的是(24)。
  第25题    2013年上半年  
   21%
与RIPv1相比,RIPv2的改进是(25)。
   知识点讲解    
   · 内部网关协议    · 配置路由协议    · RIP协议
 
       内部网关协议
        Internet的内部路由协议经过了几次大的变化。最初的RIP(路由选择信息协议)是基于Bellman-Ford算法的延迟矢量协议。这个协议在网络规模不大时工作得较好,当网络规模扩大后,因为交换的路由信息太多而显得效率很低。于是,在1979年5月被另一个路由协议——基于Dijkstra算法的链路状态协议所取代。从1988年开始,IETF开始研制新的路由协议,这就是OSPF(开放最短路径优先)协议。1990年,OSPF正式成为新的内部路由协议标准。
        OSPF基本上仍是一种链路状态协议。OSPF的路由器维护一个本地链路状态表,并随时向其他相邻的路由器发送关于链路状态的更新信息。通过周期地扩散传播链路状态信息,每个路由器都记住了关于网络拓扑结构的全局数据库。同时OSPF路由器根据用户指定的链路费用标准(延迟、带宽或收费率等)计算最短通路,由到达各个目标的最短通路构成路由表。OSPF报文包含在原始的IP数据报中传送。
 
       配置路由协议
               配置RIP协议及其与BFD联动
                      配置RIP协议
                      RIP是距离矢量路由选择协议的一种。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其他信息均予以丢弃。同时,路由器也把所收集的路由信息用RIP协议通知相邻的其他路由器。这样,正确的路由信息逐渐扩散到全网。
                      RIP使用非常广泛,它简单、可靠,便于配置。RIP版本2还支持无类域问路由(ClasslessInter-Domain Routing, CIDR)、可变长子网掩码(Variable Length Subnetwork Mask, VLSM)和不连续的子网,并且使用组播地址发送路由信息。但是RIP只适用于小型的同构网络,因为允许的最大跳数为15,任何超过15个站点的目的地均被标记为不可达。RIP每隔30s广播一次路由信息。
                      RIP应用于OSI网络七层模型的应用层。各厂家定义的管理距离(AD,即优先级)略有不同,华为定义的优先级是100。
                      假设有如下图所示的网络拓扑结构,试通过配置使RouterA、RouterB、RouterC和RouterD的所有接口上使能RIP,并使用RIP-2进行网络互连。
                      
                      网络拓扑结构
                      1)配置思路
                      采用如下的思路配置RIP的版本:
                      .配置各接口的IP地址,使网络可达。
                      .在各路由器上使能RIP,配置RIP基本功能。
                      .在各路由器上配置RIP-2版本,查看精确的子网掩码信息。
                      2)数据准备
                      为完成此配置例,需准备如下的数据:
                      .在RouterA上指定使能RIP的网段192.168.1.0。
                      .在RouterB上指定使能RIP的网段192.168.1.0,172.16.0.0,10.0.0.0。
                      .在RouterC上指定使能RIP的网段172.16.0.0。
                      .在RouterD上指定使能RIP的网段10.0.0.0。
                      .在RouterA、RouterB、RouterC和RouterD上配置RIP-2版本。
                      3)操作步骤
                      (1)配置各接口的IP地址(略)。
                      (2)配置RIP基本功能。
                      ①配置RouterA。
                      
                      ②配置RouterB。
                      
                      ③配置RouterC。
                      
                      ④配置RouterD。
                      
                      ⑤查看RouterA的RIP路由表。
                      
                      
                      从路由表中可以看出,RIP-1发布的路由信息使用的是自然掩码。
                      (3)配置RIP的版本。
                      ①在RouterA上配置RIP-2。
                      
                      ②在RouterB上配置RIP-2。
                      
                      ③在RouterC上配置RIP-2。
                      
                      ④在RouterD上配置RIP-2。
                      
                      (4)验证配置结果。
                      查看RouterA的RIP路由表。
                      
                      从路由表中可以看出,RIP-2发布的路由中带有更为精确的子网掩码信息。
                      RIP与BFD联动
                      双向转发检测BFD(Bidirectional Forwarding Detection)是一种用于检测邻居路由器之间链路故障的检测机制,它通常与路由协议联动,通过快速感知链路故障并通告使得路由协议能够快速地重新收敛,从而减少由于拓扑变化导致的流量丢失。
                      假设有如下图所示的网络拓扑结构,Router A、 Router B通过二层交换机switch互连,在设备上运行RIP协议来建立路由,同时使能允许RIP在双方接口上关联BFD应用。在Router B和二层交换机switch之间的链路发生故障后,BFD能够快速检测并通告RIP协议,触发协议快速收敛。
                      
                      网络拓扑结构
                      1)Router A的配置
                      (1)配置RIP路由。
                      
                      (2)配置RIP与BFD联动。
                      
                      2)Router B的配置
                      (1)配置RIP路由。
                      
                      (2)配置RIP与BFD联动。
                      
               配置IS-IS协议
               中间系统到中间系统IS-IS(Intermediate System to Intermediate System)属于内部网关协议IGP(Interior Gateway Protocol),用于自治系统内部。为了支持大规模的路由网络,IS-IS在自治系统内采用骨干区域与非骨干区域两级的分层结构。一般来说,将Level-1路由器部署在非骨干区域,Level-2路由器和Level-1-2路由器部署在骨干区域。每一个非骨干区域都通过Level-1-2路由器与骨干区域相连。
               IS-IS是一种链路状态路由协议,每一台路由器都会生成一个LSP,它包含了该路由器所有启用IS-IS协议接口的链路状态信息。通过跟相邻设备建立IS-IS邻接关系,互相更新本地设备的LSDB,可以使得LSDB与整个IS-IS网络的其他设备的LSDB实现同步。然后根据LSDB运用SPF算法计算出IS-IS路由。如果此IS-IS路由是到目的地址的最优路由,则此路由会下发到IP路由表中,并指导报文的转发。其相关命令如下表所示。
               
               IS-IS的相关命令及功能
               配置OSPF协议
               开放最短路径优先协议是重要的路由选择协议,它是一种链路状态路由选择协议,是由Internet工程任务组开发的内部网关路由协议,用于在单一自治系统内决策路由。
               链路是路由器接口的另一种说法,因此,OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。下面分别介绍OSPF协议的相关要点。
               (1)自治系统。自治系统包括一个单独管理实体下所控制的一组路由器,OSPF是内部网关路由协议,工作于自治系统内部。
               (2)链路状态。所谓链路状态,是指路由器接口的状态,例如Up.Down、IP地址、网络类型、链路开销以及路由器和它邻接路由器间的关系。链路状态信息通过链路状态通告(Link State Advertisement, LSA)扩散到网络上的每台路由器,每台路由器根据LSA信息建立一个关于网络的拓扑数据库。
               (3)最短路径优先算法。OSPF协议使用最短路径优先算法,利用从LSA通告得来的信息计算到达每一个目标网络的最短路径,以自身为根生成一棵树,包含了到达每个目的网络的完整路径。
               (4)路由器标识。OSPF的路由标识是一个32位的数字,它在自治系统中被用来唯一地识别路由器。默认使用最高回送地址,若回送地址没有被配置,则使用物理接口上最高的IP地址作为路由器标识。
               (5)邻接和邻居。OSPF在相邻路由器间建立邻接关系,使它们交换路由信息。邻居是指共享同一网络的路由器,并使用Hello包来建立和维护邻居路由器间的邻接关系。
               (6)区域。在OSPF网络中使用区域(Area)为自治系统分段。OSPF是一种层次化的路由选择协议,区域0是一个OSPF网络中必须具有的区域,也称为主干区域,其他所有区域要求通过区域0互连到一起。
               其相关命令及说明如下表所示。
               
               OSPF的相关命令及功能
               配置BGP协议
               边界网关协议BGP(Border Gateway Protocol)是一种实现自治系统AS(Autonomous System)之间的路由可达,并选择最佳路由的距离矢量路由协议。它具有以下特点。
               (1)实现自治系统间通信网络的信息可达。BGP允许一个AS向其他AS通告其内部网络的可达性信息,或者是通过该AS可达的其他网络的路由信息。
               (2)多个BGP路由器之间的协调。如果在一个自治系统内部有多个路由器分别使用BGP与其他自治系统中对等路由器进行通信,则通过协调使这些路由器保持路由信息的一致性。
               (3)BGP支持基于策略的路径选择。可以为域内和域间的网络可达性配置不同的策略。
               (4)BGP只需要在启动时交换一次完整信息。不需要在所有路由更新报文中传送完整的路由数据库信息,后续的路由更新报文只通告网络的变化信息,避免网络变化使得信息量大幅增加。
               (5)在BGP通告目的网络的可达性信息时。除了处理指定目的网络的下一跳信息之外,通告中还包括了通路向量,即去往该目的网络时需要经过的AS的列表,使接受者能够清楚了解去往目的网络的通路信息。
               除了以上这些,BGP允许发送方把路由信息聚集在一起,用一个条目来表示多个相关的目的网络,以节约网络带宽。允许接收方对报文进行鉴别,以验证发送方的身份等多个特点。
               BGP在不同自治系统(AS)之间进行路由转发,分为EBGP和IBGP两种情况。EBGP外部边界网关协议,用于在不同的自治系统间交换路由信息。IBGP内部边界网关协议,用于向内部路由器提供更多信息。
               其相关命令及说明如下表所示。
               
               BGP的相关命令及功能
 
       RIP协议
        路由信息协议(Routing information Protocol,RIP)采用距离矢量算法(常归于Bellman-Ford或Ford-Fulkerson算法)计算路由,是最早的路由选择协议之一。RIPv2还支持无类型域间选路(Classless Inter-Domain Routing,CIDR)和可变长子网掩码(Variable Length Subnet Mask,VLSM),只适用于小型的同构网络,是以跳数表示距离(每经过一个路由器则跳数加1),允许的最大跳数为15,因此任何超过15个中间站点的目的地均被表示为不可达。RIP是定期更新路由表的,每隔30s广播一次路由信息。下表给出了RIP路由器配置常用命令。
        
        RIP路由配置常用命令
        
               RIP配置实例
               下图给出了一个网络的实例,4个位于不同地理位置的子网通过远程电缆连接在一起,现在要求使用RIP协议完成整个路由选择的配置。
               
               RIP配置拓扑图
               
               其他三个路由器的配置与此类似,只是根据其邻接网络的不同,修改相应的network子句即可。例如,路由器R2邻接的网络则是192.168.2.0、192.168.10.0、192.168.13.0。
               RIP协议路由信息
               当完成了RIP路由选择协议的配置之后,可以使用show ip route命令来查看路由表的信息。根据前面的配置,当查看R1的路由表时,将看到以下信息:
               
               最前面的C或R代表路由项的类别,C是直连、R代表是RIP协议生成。第二部分则是目的网段,第三部分([120/1])表示RIP协议的管理距离为120,1则是路由的度量值,即跳数。可以看到路由器R1到192.168.4.0需要经过→R2→R4或→R3→R4两站,因此其度量值为2,即两跳。第四部分表示下一跳点的IP地址,第五部分(xx:xx:xx)说明了路由产生的时间,第六部分表示该条路由所使用的接口。
               管理距离是用来表示路由协议的优先级的,RIP的值为120,OSPF为110、IGRP为100、EIGRP为90、静态设置为1、直接连接为0;因此可以看出在路由项中,EIGRP是首选的,然后才是IGRP、OSPF、RIP。
               RIP路由更新的会聚问题
               RIP的一大缺点就是当网络发生变化或出现故障而引起拓扑结构的变化时,其会聚完成是需要一定时间的。下图给出的就是一个这样的例子。
               
               RIP路由更新的会聚问题示意图
               当一切正常时,各个路由器的路由表如下表所示。
               
               正常时的路由表信息
               如果这时路由器R3和网络192.168.40.0的连接发生了故障,路由更新就会影响各个路由表,但由于RIP是定时更新(每30s更新一次)。因此,随着时间的不同,会有不同的结果。
               下表中列出了在断开后的30s后及500s后的,R2路由表的信息。
               
               断开后的30s后及500s后的,R2路由表的信息
               在30s后,R2收到了来自R3的路由更新信息——即R3已无法连接到192.168.40.0网段,但这时R1的路由表还没有更新,因此R2则认为其可以访问该网段,因此复制该路由表项,并将跳数加1。随着不可达信息的漫延,最终在500s后,会使得跳数增长到16,这时才真正完成了会聚。
   题号导航      2009年上半年 网络工程师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第27题    在手机中做本题