免费智能真题库 > 历年试卷 > 系统分析师 > 2019年上半年 系统分析师 上午试卷 综合知识
  第39题      
  知识点:   软件过程改进   功能特性   能力成熟度模型   软件过程   项目管理
  关键词:   能力成熟度模型   软件过程   软件能力成熟度   项目管理        章/节:   软件过程       

 
软件能力成熟度模型提供了一个软件能力成熟度的框架,它将软件过程改进的步骤组织成5个成熟度等级。其中,软件过程已建立了基本的项目管理过程,可用于对成本、进度和功能特性进行跟踪,说明软件已达到( )成熟度等级。
 
 
  A.  已定义级
 
  B.  优化级
 
  C.  已管理级
 
  D.  可重复级
 
 
 

   知识点讲解    
   · 软件过程改进    · 功能特性    · 能力成熟度模型    · 软件过程    · 项目管理
 
       软件过程改进
        在软件过程改进方面,主要考查软件过程能力成熟度模型(Capability Maturity Model, CMM)和能力成熟度模型集成(Capability Maturity Model Integration, CMMI)。
                      CMM
                      CMM模型描述和分析了软件过程能力的发展程度,确立了一个软件过程成熟程度的分级标准。
                      (1)初始级:软件过程的特点是无秩序的,有时甚至是混乱的。软件过程定义几乎处于无章法和无步骤可循的状态,软件产品所取得的成功往往依赖于极个人的努力和机遇。初始级的软件过程是未加定义的随意过程,项目的执行是随意的甚至是混乱的。也许,有些企业制定了一些软件工程规范,但若这些规范未能覆盖基本的关键过程要求,且执行时没有政策、资源等方面的保证,那么它仍然被视为初始级。
                      (2)可重复级:已经建立了基本的项目管理过程,可用于对成本、进度和功能特性进行跟踪。对类似的应用项目,有章可循并能重复以往所取得的成功。焦点集中在软件管理过程上。一个可管理的过程则是一个可重复的过程,一个可重复的过程则能逐渐演化和成熟。从管理角度可以看到一个按计划执行的且阶段可控的软件开发过程。
                      (3)已定义级:用于管理和工程的软件过程均已文档化、标准化,并形成整个软件组织的标准软件过程。全部项目均采用与实际情况相吻合的、适当修改后的标准软件过程来进行操作。它要求制定企业范围的工程化标准,而且无论是管理还是工程开发都需要一套文档化的标准,并将这些标准集成到企业软件开发标准过程中去。所有开发的项目需根据这个标准过程,剪裁出项目适宜的过程,并执行这些过程。过程的剪裁不是随意的,在使用前需经过企业有关人员的批准。
                      (4)已管理级:软件过程和产品质量有详细的度量标准。软件过程和产品质量得到了定量的认识和控制。已管理级的管理是量化的管理。所有过程需建立相应的度量方式,所有产品的质量(包括工作产品和提交给用户的产品)需有明确的度量指标。这些度量应是详尽的,且可用于理解和控制软件过程和产品,量化控制将使软件开发真正变成为一个工业生产活动。
                      (5)优化级:通过对来自过程、新概念和新技术等方面的各种有用信息的定量分析,能够不断地、持续地进行过程改进。如果一个企业达到了这一级,表明该企业能够根据实际的项目性质、技术等因素,不断调整软件生产过程以求达到最佳。
                      在CMM中,每个成熟度等级(第一级除外)规定了不同的关键过程域(Key Process Area, KPA),一个软件组织如果希望达到某一个成熟度级别,就必须完全满足关键过程域所规定的要求,即满足关键过程域的目标。每个级别对应的关键过程域见下表。
                      
                      关键过程域的分类
                      CMMI
                      与CMM相比,CMMI涉及面更广,专业领域覆盖软件工程、系统工程、集成产品开发和系统采购。据美国国防部资料显示,运用CMMI模型管理的项目,不仅降低了项目的成本,而且提高了项目的质量与按期完成率。
                      CMMI可以看做把各种CMM集成到一个系列的模型中,CMMI的基础源模型包括软件CMM、系统工程CMM,以及集成化产品和过程开发CMM等。CMMI也描述了5个不同的成熟度级别。
                      每一种CMMI模型都有两种表示法,即阶段式和连续式。这是因为在CMMI的3个源模型中,CMM是“阶段式”模型,系统工程能力模型是“连续式”模型,而集成产品开发(IPD)CMM是一个混合模型,组合了阶段式和连续式两者的特点。两种表示法在以前的使用中各有优势,都有很多支持者,因此,CMMI产品开发组在集成这3种模型时,为了避免由于淘汰其中任何一种表示法而失去用户对CMMI的支持,并没有选择单一的结构表示法,而是为每一个CMMI都推出了两种不同表示法的版本。
                      不同表示法的模型具有不同的结构。连续式表示法强调的是单个过程域的能力,从过程域的角度考查基线和度量结果的改善,其关键术语是“能力”;而阶段式表示法强调的是组织的成熟度,从过程域集合的角度考查整个组织的过程成熟度阶段,其关键术语是“成熟度”。
                      尽管两种表示法的模型在结构上有所不同,但CMMI产品开发组仍然尽最大努力确保了两者在逻辑上的一致性,两者的需要构件和期望部件基本上都是一样的。过程域、目标在两种表示法中都一样,特定实践和共性实践在两种表示法中也不存在根本区别。因此,模型的两种表示法并不存在本质上的不同。组织在进行集成化过程改进时,可以从实用角度出发选择某一种偏爱的表示法,而不必从哲学角度考虑两种表示法之间的差异。
                      阶段式模型也把组织分为以下5个不同的级别。
                      (1)初始级:代表了以不可预测结果为特征的过程成熟度,过程处于无序状态,成功主要取决于团队的技能。
                      (2)已管理级:代表了以可重复项目执行为特征的过程成熟度。组织使用基本纪律进行需求管理、项目计划、项目监督和控制、供应商协议管理、产品和过程质量保证、配置管理,以及度量和分析。对于级别2而言,主要的过程焦点在于项目级的活动和实践。
                      (3)严格定义级:代表了以组织内改进项目执行为特征的过程成熟度。强调级别3的关键过程域的前后一致的、项目级的纪律,以建立组织级的活动和实践。
                      (4)定量管理级:代表了以改进组织性能为特征的过程成熟度。4级项目的历史结果可用来交替使用,在业务表现的竞争尺度(成本、质量、时间)方面的结果是可预测的。
                      (5)优化级:代表了以可快速进行重新配置的组织性能和定量的、持续的过程改进为特征的过程成熟度。
                      CMMI的具体目标是:
                      (1)改进组织的过程,提高对产品开发和维护的管理能力。
                      (2)给出能支持将来集成其他科目CMM的公共框架。
                      (3)确保所开发的全部有关产品符合软件过程改进的国际标准ISO/IEC15504对软件过程评估的要求。
                      使用在CMMI框架内开发的模型具有下列优点:
                      (1)过程改进能扩展到整个企业级。
                      (2)先前各模型之间的不一致和矛盾将得到解决。
                      (3)既有分级的模型表示,也有连续的模型表示,可任意选用。
                      (4)原先单科目过程改进的工作可与其他科目的过程改进工作结合起来。
                      (5)基于CMMI的评估将与组织原先评估得分相协调,从而保护当前的投资,并与ISO/IEC15504评估结果相一致。
                      (6)节省费用,特别是当要运用多科目改进时,以及进行相关的培训和评估。
                      (7)鼓励组织内各科目之间进行沟通和交流。
 
       功能特性
        功能特性规定了接口信号的来源、作用以及其他信号之间的关系。
 
       能力成熟度模型
        能力成熟度模型(简称CMM)是对一个组织机构的能力进行成熟度评估的模型。成熟度级别一般分成五级:1级-非正式执行、2级-计划跟踪、3级-充分定义、4级-量化控制、5级-持续优化。其中,级别越大,表示能力成熟度越高,各级别定义如下:
        . 1级-非正式执行:具备随机、无序、被动的过程;
        . 2级-计划跟踪:具备主动、非体系化的过程;
        . 3级-充分定义:具备正式的、规范的过程;
        . 4级-量化控制:具备可量化的过程;
        . 5级-持续优化:具备可持续优化的过程。
        目前,网络安全方面的成熟度模型主要有SSE-CMM、数据安全能力成熟度模型、软件安全能力成熟度模型等。
               SSE-CMM
               SSE-CMM(Systems Security Engineering Capability Maturity Model)是系统安全工程能力成熟度模型。SSE-CMM包括工程过程类(Engineering)、组织过程类(Organization)、项目过程类(Project)。各过程类包括的过程内容如下表所示。
               
               SSE-CMM系统安全工程能力成熟度模型过程清单
               SSE-CMM的工程过程、风险过程、保证过程的相互关系如下图所示。
               
               SSE-CMM的工程过程、风险过程、保证过程关联图
               SSE-CMM的工程过程关系如下图所示。
               
               SSE-CMM的工程过程关联图
               SSE-CMM的工程质量来自保证过程,如下图所示。
               
               SSE-CMM的保证过程图
               数据安全能力成熟度模型
               根据《信息安全技术数据安全能力成熟度模型》,数据安全能力成熟度模型架构如下图所示。
               
               数据安全能力成熟度模型架构
               数据安全能力从组织建设、制度流程、技术工具及人员能力四个维度评估:
               .组织建设——数据安全组织机构的架构建立、职责分配和沟通协作;
               .制度流程——组织机构关键数据安全领域的制度规范和流程落地建设;
               .技术工具——通过技术手段和产品工具固化安全要求或自动化实现安全工作;
               .人员能力——执行数据安全工作的人员的意识及专业能力。
               详细情况参考标准。
               软件安全能力成熟度模型
               软件安全能力成熟度模型分成五级,各级别的主要过程如下:
               . CMM1级——补丁修补;
               . CMM2级——渗透测试、安全代码评审;
               . CMM3级——漏洞评估、代码分析、安全编码标准;
               . CMM4级——软件安全风险识别、SDLC实施不同安全检查点;
               . CMM5级——改进软件安全风险覆盖率、评估安全差距。
 
       软件过程
        在开发产品或构建系统时,遵循一系列可预测的步骤(即路线图)是非常重要的,它有助于及时交付高质量的产品。软件开发中所遵循的路线图称为"软件过程"。过程是活动的集合,活动是任务的集合。软件过程有3层含义:一个是个体含义,即指软件产品或系统在生存周期中的某一类活动的集合,如软件开发过程、软件管理过程等;二是整体含义,即指软件产品或系统在所有上述含义下的软件过程的总体;三是工程含义,即指解决软件过程的工程,应用软件的原则、方法来构造软件过程模型,并结合软件产品的具体要求进行实例化,以及在用户环境下的运作,以此进一步提高软件的生产率,降低成本。
               能力成熟度模型(CMM)
               CMM将软件组织的过程能力分成五个成熟度级别:初始级、可重复级、已定义级、已管理级和优化级。由低到高,软件开发生产精度越来越高,每单位工程的生产周期越来越短。
               (1)初始级。软件过程是无序的,有时甚至是混乱的,对过程几乎没有定义,成功取决于个人努力。
               (2)可重复级。建立了基本的项目管理过程来跟踪费用、进度和功能特性;制定了必要的过程纪律,能重复早先类似应用项目取得的成功。
               (3)定义级。已将软件管理和工程两方面的过程文档化、标准化,并综合成该组织的标准软件过程。所有项目均使用经批准、剪裁的标准软件过程来开发和维护软件。
               (4)管理级。收集对软件过程和产品质量的详细度量,对软件过程和产品都有定量的理解和控制。
               (5)优化级。过程的量化反馈和先进的新思想、新技术促使过程不断改进。
               能力成熟度模型集成(CMMI)
               CMM的成功导致了适用不同学科领域的模型的衍生,如系统工程的能力成熟度模型,适用于集成化产品开发的能力成熟度模型等。而一个工程项目又往往涉及多个交叉的学科,因此有必要将各种过程改进的工作集成起来。1998年,由美国产业界、政府和卡内基.梅隆大学软件工程研究所共同主持CMMI项目。CMMI是若干过程模型的综合和改进,是支持多个工程学科和领域的、系统的、一致的过程改进框架,能适应现代工程的特点和需要,能提高过程的质量和工作效率。
               CMMI提供了两种表示方法:阶段式模型和连续式模型。
               1)阶段式模型
               阶段式模型的结构类似于CMM,它关注组织的成熟度。CMMI-SE/SW/IPPD 1.1版中有5个成熟度等级。
               初始的:过程不可预测且缺乏控制。
               已管理的:过程为项目服务。
               已定义的:过程为组织服务。
               定量管理的:过程已度量和控制。
               优化的:集中于过程改进。
               2)连续式模型
               连续式模型关注每个过程域的能力,一个组织对不同的过程域可以达到不同的过程域能力等级(Capability Level,CL)。CMMI中包括6个过程域能力等级,等级号为0-5。能力等级包括共性目标及相关的共性实践,这些实践在过程域内被添加到特定目标和实践中。当组织满足过程域的特定目标和共性目标时,就说该组织达到了那个过程域的能力等级。
               能力等级可以独立地应用于任何单独的过程域,任何一个能力等级都必须满足比它等级低的能力等级的所有准则。对各能力等级的含义简述如下。
               CLo(未完成的):过程域未执行或未得到CLi中定义的所有目标。
               CLi(已执行的):其共性目标是过程将可标识的输入工作产品转换成可标识的输出工作产品,以实现支持过程域的特定目标。
               CL2(已管理的):其共性目标集中于已管理的过程的制度化。根据组织级政策规定过程的运作将使用哪个过程,项目遵循已文档化的计划和过程描述,所有正在工作的人都有权使用足够的资源,所有工作任务和工作产品都被监控、控制和评审。
               CL3(已定义级的):其共性目标集中于已定义的过程的制度化。过程是按照组织的剪裁指南从组织的标准过程集中剪裁得到的,还必须收集过程资产和过程的度量,并用于将来对过程的改进。
               CL4(定量管理的):其共性目标集中于可定量管理的过程的制度化。使用测量和质量保证来控制和改进过程域,建立和使用关于质量和过程执行的定量目标作为管理准则。
               CLs(优化的):使用量化(统计学)手段改变和优化过程域,以满足客户要求的改变和持续改进计划中的过程域的功效。
 
       项目管理
        构建嵌入式系统是一项复杂的任务,尤其是涉及到很多人员共同长期工作的时候。为了使嵌入式项目开发获得成功,必须对系统开发项目的工作范围、花费的工作量(成本)、可能遇到的风险、进度的安排、要实现的任务、经历的里程碑以及需要的资源(人、硬/软件)等做到心中有数,而项目管理可以提供这些信息。项目管理的过程一般包括初启、计划、执行、监控、结项,项目管理的范围覆盖整个系统生命周期过程。
               管理范围
               有效的项目管理集中于4P,即人员(People)、产品(Product)、过程(Process)和项目(Project)。必须将人员组织起来以有效地完成产品构建工作;必须和客户及其他利益相关者很好地沟通,以便了解产品的范围和需求;必须选择适合于人员和产品的过程;必须估算完成工作任务的工作量和工作时间,从而制订项目计划。
               “人的因素”非常重要,在所有项目中,最关键的因素是人员,涉及项目管理人员、高级管理人员、开发人员、客户和最终用户。人员能力成熟度模型(People Capability Maturity Model,PCMM)针对人员定义了以下关键实践域:人员配备、沟通与协调、工作环境、业绩管理、培训、报酬、能力素质分析与开发、个人事业发展、工作组发展以及团队精神或企业文化培育等。PCMM成熟度达到较高水平的组织,更有可能实现有效的项目管理事件。
               在制订项目计划之前,首先确定产品的目标和范围,考虑可选的解决方案,识别技术和管理上的限制。如果没有这些信息,就无法进行合理(精确)的成本估算,也无法进行有效的风险评估和适当的项目任务划分,更无法制定可管理的项目进度计划来给出意义明确的项目进展标志。确定产品的目标只是识别出产品的总体目标,而不用考虑如何实现这些目标。确定产品的范围是识别出产品的主要数据、功能和行为特性,并且应该用量化的方式界定这些特性。然后开始考虑备选解决方案,不讨论细节,使管理者与参与开发的人员根据特定的约束条件选择相对最佳的方案,约束条件有产品的交付期限、预算限制、可用人员、技术接口以及其他各种因素。
               开发过程提供了一个框架,一小部分框架活动适用于所有的项目,多种不同的任务集合使得框架活动适合于不同项目的特性和项目团队的需求。普适性活动(如质量管理、配置管理、测量等)覆盖了过程模型,独立于任何一个框架活动,且贯穿于整个过程之中。
               为了成功地管理项目,需要有计划、可控制,这样才能管理复杂的系统开发;需要了解可能会出现的各类问题以便加以避免。可以采用的方法有:
               (1)在正确的基础上开始工作。
               (2)保持动力。
               (3)跟踪进度。
               (4)做出正确的决策。
               (5)进行事后分析。
               成本估算
               系统开发成本估算主要指系统开发过程中所花费的工作量及相应的代价。为了使开发项目能够在规定的时间内完成,而且不超过预算,成本预算和管理控制是关键。项目开发成本的估算主要靠分解和类推的手段进行。分解技术是将项目分解成一系列较小的、容易理解的问题进行估算。常用的分解技术有:基于问题的估算、基于代码行(LOC)估算、基于功能点(FP)的估算、基于过程的估算、基于用例的估算。选择或结合使用分解技术,进行成本估算。基本的成本估算方法有如下几种。
               (1)自顶向下估算方法。估算人员参照以前完成的项目所耗费的总成本(或总工作量)来推算将要开发的系统的总成本(或总工作量),然后把它们按阶段、步骤和工作单元进行分配。
               自顶向下估算方法的主要优点是对系统级工作的重视,所以估算中不会遗漏集成、配置管理等系统级事务的成本估算,且估算工作量小、速度快。其缺点是不清楚低级别上的技术性困难,而这些困难将会使成本上升。
               (2)自底向上估算方法。自底向上估算方法是将待开发的系统细分,分别估算每一个子任务所需要的开发工作量,然后将它们加起来,得到系统的总开发量。这种方法的优点是对每一部分的估算工作交给负责该部分工作的人来做,所以估算较为准确。其缺点是缺少对各项子任务之间相互联系所需要工作量和与开发有关的系统级工作量的估算,因此预算往往偏低。
               (3)差别估算方法。差别估算方法是将开发项目与一个或多个已完成的类似项目进行比较,找出与某个相类似项目的若干不同之处,并估算每个不同之处对成本的影响,导出开发项目的总成本。该方法的优点是可以提高估算的准确度,缺点是不容易明确“差别”的界限。
               除以上方法外,还有许多方法,大致可分为三类:专家估算法、类推估算法和算式估算法。
               (1)专家估算法。该方法依靠一个或多个专家对要求的项目做出估算,其精确性取决于专家对估算项目的定性参数的了解和他们的经验。
               (2)类推估算法。在自顶向下的方法中,它是将估算项目的总体参数与类似项目进行直接比较得到结果;在自底向上方法中,类推是在两个具有相似条件的工作单元之间进行。
               (3)算式估算法。专家估算法和类推估算法的缺点在于它们依靠带有一定盲目性和主观性的猜测对项目进行估算。算式估算法则是企图避免主观因素的影响,用于估算的方法有两种基本类型:由理论导出和由经验导出。
               典型的成本估算模型主要有动态多变量普特南(Putnam)模型和层次结构的结构性成本模型(Constructive Cost Model,COCOMO)的升级模型COCOMOII等。普特南模型基于软件方程,它假设在软件开发的整个生命周期中有特定的工作量分布。COCOMOII模型层次结构中有三种不同的估算选择:对象点、功能点和源代码行。
               风险分析
               新的系统建立时,总是存在某些不确定性。例如,用户要求是否能确切地被理解?在项目最后结束之前要求实现的功能能否建立?是否存在目前仍未发现的技术难题?在项目出现严重延期时是否会发生一些变更?等等。风险是潜在的,需要识别、评估发生的概率、估算其影响、并制定实际发生时的应急计划。
               风险分析在项目管理中具有决定性作用。当在软件工程的环境中考虑风险时,主要关注以下三个方面。一是关心未来。风险是否会导致项目失败;二是关心变化。用户需求、开发技术、目标机器以及所有其他与项目有关的实体会发生什么变化;三是必须解决需要做出选择的问题,即应当采用什么方法和工具,应当配备多少人力,在质量上强调到什么程度才满足要求等。
               风险分析实际上是贯穿软件工程中的一系列风险管理步骤,其中包括风险识别、风险估计、风险管理策略、风险解决和风险监控。
               进度管理
               进度安排包括把一个项目所有的工作分解为若干个独立的活动,并描述这些活动之间的依赖关系,估算完成这些活动所需的工作量,分配人力和其他资源,制定进度时序。进度的合理安排是如期完成软件项目的重要保证,也是合理分配资源的重要依据,因此进度安排是管理工作的一个重要组成部分。有两种安排软件开发项目进度的方式:
               (1)系统最终交付日期已经确定,系统开发部门必须在规定期限内完成;
               (2)系统最终交付日期只确定了大致的年限,最后交付日期由软件开发部门确定。
               进度安排的常用图形描述方法有Gantt图(甘特图)和PERT(Program Evaluation&Review Technique,项目计划评审技术)图。
               (1)Gantt图。Gantt图中横坐标表示时间(如时、天、周、月、年等),纵坐标表示任务,图中的水平线段表示一个任务的进度安排,线段的起点和终点对应在横坐标上的时间分别表示该任务的开始时间和结束时间,线段的长度表示完成该任务所持续的时间。当日历中同一时段中存在多个水平条时,表示任务之间的并发。下图所示的Gantt图描述了三个任务的进度安排。该图表示:任务1首先开始,完成它需要12周时间;任务2在2周后开始,完成它需要18周;任务3在12周后开始,完成它需要10周。
               
               Gantt图实例
               Gantt图能清晰地描述每个任务从何时开始,到何时结束,任务的进展情况以及各个任务之间的并行性;但是它不能清晰地反映出各任务之间的依赖关系,难以确定整个项目的关键所在,也不能反映计划中有潜力的部分。
               (2)PERT图。PERT图是一个有向图,其基本符号如下图所示。
               
               PERT图的基本符号
               PERT图中的有向弧表示任务,可以标上完成该任务所需的时间,图中的结点表示流入结点的任务已结束,并开始流出结点的任务,这里把结点称为事件。只有当流入该结点的所有任务都结束时,结点所表示的事件才出现,流出结点的任务才可以开始。事件本身不消耗时间和资源,它仅表示某个时间点。每个事件有一个事件号及出现该事件的最早时刻和最迟时刻。最早时刻表示在此时刻之前从该事件出发的任务不可能开始;最迟时刻表示从该事件出发的任务必须在此时刻之前开始,否则整个工程就不能如期完成。每个任务还可以有一个松弛时间(slack time),表示在不影响整个工期的前提下,完成该任务有多少机动时间。为了表示任务间的关系,图中还可以加入一些空任务(用虚线有向弧表示),完成空任务的时间为0。
               PERT图的一个实例如下图所示,该图所表示的工程可分为12个任务,事件号1表示工程开始,事件号11表示工程结束(完成所有任务需要23个时间单位)。松弛时间为0的任务构成了完成整个工程的关键任务,其事件流为1→2→3→4→6→8→10→11,也就是说,这些任务不能拖延,否则整个工程就不能在23个时间单位内完成。
               
               PERT图示例
               PERT图不仅给出了每个任务的开始时间、结束时间和完成该任务所需的时间,还给出了任务之间的关系,即哪些任务完成后才能开始另外一些任务,还可以找出如期完成整个工程的关键任务。任务的松弛时间则反映了完成任务时可以推迟其开始时间或延长其所需完成的时间。PERT图不能反映任务之间的并行关系。
   题号导航      2019年上半年 系统分析师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第39题    在手机中做本题