免费智能真题库 > 历年试卷 > 信息处理技术员 > 2019年下半年 信息处理技术员 上午试卷 综合知识
  第64题      
  知识点:   信息处理有关的法律与规章制度   大数据   数据采集
  关键词:   大数据   个人信息   数据采集   数据        章/节:   信息处理基本概念       

 
对个人信息进行大数据采集时,要遵循的原则不包括(64)。
 
 
  A.  合法原则,不得窃取或者以其他非法方式获取个人信息
 
  B.  正当原则,不得以欺骗、误导、强迫、违约等方式收集个人信息
 
  C.  充分原则,为拓展应用范围,收集的个人信息的数据项应尽可能多
 
  D.  必要原则,满足信息主体授权目的所需的最少个人信息类型和数量
 
 
 

 
  第64题    2016年下半年  
   34%
某软件公司职工以下的行为中,除(64)外,都侵害了本单位的权益。
  第65题    2013年上半年  
   33%
数据处理技术员小王为了本企业的利益做了如下几项数据处理,其中(65)是违法的。
  第64题    2013年下半年  
   37%
我国颁布的互联网和信息系统安全保护等有关的法规,规范了从业人员的行为。对从业人员行为的要求中,不包括(64)。
   知识点讲解    
   · 信息处理有关的法律与规章制度    · 大数据    · 数据采集
 
       信息处理有关的法律与规章制度
        信息处理有关的法律与规章制度是规范管理信息系统安全和保密的基础,打击各类利用和针对计算机网络进行犯罪的有力武器,也是保障信息系统用户利益和安全的坚强后盾。信息系统运行管理包括三个方面的工作:日常运行管理、系统文档管理以及系统的安全与保密,因此需要在国家相关法律与规章制度的基础上建立健全本单位信息系统运行的管理制度,明确各类人员的职责和职权范围,以保障信息系统正常、安全的运行。
               信息系统日常运行管理制度
               信息系统日常运行管理制度建立的目的是要求系统运行管理人员严格按照规章制度办事,定时定内容地重复进行的有关数据与硬件的维护,以及对突发事件的处理等。相关的规章制度如下:
               .机房管理与设备维护制度。例如,出入机房人员登记制度、各种设备的保养与安全管理制度、简易故障的诊断与排除制度、易耗品的更换与安装等规定。
               .突发事件处理制度。当突发事件发生时,要求信息管理专业人员负责处理,并且对发生的现象、造成的损失、引起的原因及解决的方法等作详细的记录制度。
               .信息备份、存档、整理和初始化制度。信息(或数据)备份制度:要求每天必须对新增加的或更改过的数据作备份。数据正本与备份应分别存于不同的磁盘上或其他存储介质上。数据存档或归档制度:要求每个星期对银行客户资料转入客户档案数据库,或新增客户数到10 000时将资料转入档案数据库,作为历史数据存档。数据整理制度:要求定期对数据文件或数据表的索引、记录顺序等的调整,可以使数据的查询更为快捷,对保持数据的完整性也很有好处。数据初始化制度:在系统正常运行后,以月度或年度为时间单位的数据文件或数据表的切换与结转数等的预置,即数据的初始化。
               信息系统文档管理制度
               文档(Documentation)是以书面形式记录人们的思维活动及其工作结果的文字资料。信息系统开发要以文档描述为依据,信息系统实体运行与维护要用文档来支持。例如,文档制定标准与规范、收存和保管文档规定、文档借阅手续等制度。
               信息系统运行安全与保密制度
               信息系统的安全制度是为了防止破坏系统软件、硬件及信息资源行为而制定的相关规定与措施。例如,国家出台的“中华人民共和国计算机信息系统安全保护条例”,各企业针对信息系统实际运行情况制定的“信息系统中的信息等级划分及使用权限规定”、“账号申请及注销程序”等。
               信息系统的保密制度是为了防止有意窃取信息资源行为的发生而制定的相关规定与措施。例如,对于信息安全保密应执行的法律制度和规范,有全国人大发布的《中华人民共和国保守国家秘密法》、国家保密局发布的《计算机信息系统保密管理暂行规定》、中共中央保密委员会办公室和国家保密局联合发布的《涉及国家秘密的通信、办公自动化和计算机信息系统审批暂行办法》等。
 
       大数据
               大数据相关概念
                      大数据概念
                      大数据的应用和技术是在互联网快速发展中诞生的,起点可追溯到2000年前后。当时互联网网页爆发式增长,每天新增约700万个网页,到2000年底全球网页数达到40亿,用户检索信息越来越不方便。谷歌等公司率先建立了覆盖数十亿网页的索引库,开始提供较为精确的搜索服务,大大提升了人们使用互联网的效率,这是大数据应用的起点。当时搜索引擎要存储和处理的数据,不仅数量之大前所未有,而且以非结构化数据为主,传统技术无法应对。为此,谷歌提出了一套以分布式为特征的全新技术体系,即后来陆续公开的分布式文件系统(Google File System,GFS)、分布式并行计算(MapReduce)和分布式数据库(BigTable)等技术,以较低的成本实现了之前技术无法达到的规模。这些技术奠定了当前大数据技术的基础,可以认为是大数据技术的源头。
                      伴随着互联网产业的崛起,这种创新的海量数据处理技术在电子商务、定向广告、智能推荐、社交网络等方面得到应用,取得巨大的商业成功。这启发全社会开始重新审视数据的巨大价值,于是金融、电信等拥有大量数据的行业开始尝试这种新的理念和技术,取得初步成效。与此同时,业界也在不断对谷歌提出的技术体系进行扩展,使之能在更多的场景下使用。2011年,麦肯锡、世界经济论坛等知名机构对这种数据驱动的创新进行了研究总结,随即在全世界兴起了一股大数据热潮。
                      虽然大数据已经成为全社会热议的话题,但至今“大数据”尚无公认的统一定义。我们认为,认识大数据要把握“资源、技术、应用”三个层次。大数据是具有体量大、结构多样、时效强等特征的数据;处理大数据需采用新型计算架构和智能算法等新技术;大数据的应用强调以新的理念应用于辅助决策、发现新的知识,更强调在线闭环的业务流程优化。因此可以说,大数据不仅“大”,而且“新”,是新资源、新工具和新应用的综合体。
                      大数据特点
                      业界通常用Volume、Variety、Value、Velocity这4个V来概括大数据的特点:
                      (1)数据体量巨大(Volume)。IDC研究表明,数字领域存在着1.8万亿吉字节的数据。企业数据正在以55%的速度逐年增长。实体世界中,数以百万计的数据采集传感器被嵌入到各种设备中,在数字化世界中,消费者每天的生活(通信、上网浏览、购物、分享、搜索)都在产生着数量庞大的数据。
                      (2)数据类型繁多(Variety)。数据可分为结构化数据、半结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,音频、视频、图片、地理位置信息等类型的非结构化数据量占比达到了80%,并在逐步提升,有用信息的提取难度不断增大。
                      (3)价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断监控过程中,可能有用的数据仅仅只有一两秒。
                      (4)时效性高(Velocity)。这是大数据区分于传统数据挖掘最显著的特征。数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。
               大数据技术
                      大数据技术体系
                      大数据来源于互联网、企业系统和物联网等信息系统,经过大数据处理系统的分析挖掘,产生新的知识用以支撑决策或业务的自动智能化运转。从数据在信息系统中的生命周期看,大数据从数据源经过分析挖掘到最终获得价值一般需要经过5个主要环节,包括数据准备、数据存储与管理、计算处理、数据分析和知识展现,技术体系如下图所示。每个环节都面临不同程度的技术上的挑战。
                      
                      大数据技术框架
                      (1)数据准备环节。在进行存储和处理之前,需要对数据进行清洗、整理,传统数据处理体系中称为ETL(Extracting,Transforming,Loading)过程。与以往数据分析相比,大数据的来源多种多样,包括企业内部数据库、互联网数据和物联网数据,不仅数量庞大、格式不一,质量也良莠不齐。这就要求数据准备环节一方面要规范格式,便于后续存储管理,另一方面要在尽可能保留原有语义的情况下去粗取精、消除噪声。
                      (2)数据存储与管理环节。当前全球数据量正以每年超过50%的速度增长,存储技术的成本和性能面临非常大的压力。大数据存储系统不仅需要以极低的成本存储海量数据,还要适应多样化的非结构化数据管理需求,具备数据格式上的可扩展性。
                      (3)计算处理环节。需要根据处理的数据类型和分析目标,采用适当的算法模型,快速处理数据。海量数据处理要消耗大量的计算资源,对于传统单机或并行计算技术来说,速度、可扩展性和成本上都难以适应大数据计算分析的新需求。分而治之的分布式计算成为大数据的主流计算架构,但在一些特定场景下的实时性还需要大幅提升。
                      (4)数据分析环节。数据分析环节需要从纷繁复杂的数据中发现规律提取新的知识,是大数据价值挖掘的关键。传统数据挖掘对象多是结构化、单一对象的小数据集,挖掘更侧重根据先验知识预先人工建立模型,然后依据既定模型进行分析。对于非结构化、多源异构的大数据集的分析,往往缺乏先验知识,很难建立显式的数学模型,这就需要发展更加智能的数据挖掘技术。
                      (5)知识展现环节。在大数据服务于决策支撑场景下,以直观的方式将分析结果呈现给用户,是大数据分析的重要环节。如何让复杂的分析结果易于理解是主要挑战。在嵌入多业务中的闭环大数据应用中,一般是由机器根据算法直接应用分析结果而无需人工干预,这种场景下知识展现环节则不是必需的。
                      总的来看,大数据对数据准备环节和知识展现环节来说只是量的变化,并不需要根本性的变革。但大数据对数据分析、计算和存储三个环节影响较大,需要对技术架构和算法进行重构,是当前和未来一段时间大数据技术创新的焦点。下面简要分析上述3个环节面临的挑战及发展趋势。
                      大数据技术创新
                      大数据技术体系纷繁复杂,其中一些技术创新格外受到关注。随着社交网络的流行导致大量非结构化数据出现,传统处理方法难以应对,数据处理系统和分析技术开始不断发展。从2005年Hadoop的诞生开始,形成了数据分析技术体系这一热点。伴随着量急剧增长和核心系统对吞吐量以及时效性的要求提升,传统数据库需向分布式转型,形成了事务处理技术体系这一热点。然而时代的发展使得单个企业甚至行业的数据都难以满足要求,融合价值更加显现,形成了数据流通技术体系这一热点。
                             数据分析技术
                             从数据在信息系统中的生命周期看,数据分析技术生态主要有5个发展方向,包括数据采集与传输、数据存储与管理、计算处理、查询与分析、可视化展现。在数据采集与传输领域渐渐形成了Sqoop、Flume、Kafka等一系列开源技术,兼顾离线和实时数据的采集和传输。在存储层,HDFS已经成为了大数据磁盘存储的事实标准,针对关系型以外的数据模型,开源社区形成了K-V(key-value)、列式、文档、图这四类NoSQL数据库体系,Redis、HBase、Cassandra、MongoDB、Neo4j等数据库是各个领域的领先者。计算处理引擎方面,Spark已经取代MapReduce成为了大数据平台统一的计算平台,在实时计算领域Flink是Spark Streaming强力的竞争者。在数据查询和分析领域形成了丰富的SQL on Hadoop的解决方案,Hive、HAWQ、Impala、Presto、Spark SQL等技术与传统的大规模并行处理(Massively Parallel Processor,MPP)数据库竞争激烈,Hive还是这个领域当之无愧的王者。在数据可视化领域,敏捷商业智能(Business Intelligence,BI)分析工具Tableau、QlikView通过简单的拖拽来实现数据的复杂展示,是目前最受欢迎的可视化展现方式。
                             相比传统的数据库和MPP数据库,Hadoop最初的优势来源于良好的扩展性和对大规模数据的支持,但失去了传统数据库对数据精细化的操作,包括压缩、索引、数据的分配裁剪以及对SQL的支持度。经过10多年的发展,数据分析的技术体系渐渐在完善自己的不足,也融合了很多传统数据库和MPP数据库的优点,从技术的演进来看,大数据技术正在发生以下变化:
                             (1)更快。Spark已经替代MapReduce成为了大数据生态的计算框架,以内存计算带来计算性能的大幅提高,尤其是Spark 2.0增加了更多了优化器,计算性能进一步增强。
                             (2)流处理的加强。Spark提供一套底层计算引擎来支持批量、SQL分析、机器学习、实时和图处理等多种能力,但其本质还是小批的架构,在流处理要求越来越高的现在,Spark Streaming受到Flink激烈的竞争。
                             (3)硬件的变化和硬件能力的充分挖掘。大数据技术体系本质是数据管理系统的一种,受到底层硬件和上层应用的影响。当前硬件的芯片的发展从CPU的单核到多核演变转化为向GPU、FPGA、ASIC等多种类型芯片共存演变。而存储中大量使用SSD来代替SATA盘,NVRAM有可能替换DRAM成为主存。大数据技术势必需要拥抱这些变化,充分兼容和利用这些硬件的特性。
                             (4)SQL的支持。从Hive诞生起,Hadoop生态就在积极向SQL靠拢,主要从兼容标准SQL语法和性能等角度来不断优化,层出不穷的SQL on Hadoop技术参考了很多传统数据库的技术。而Greenplum等MPP数据库技术本身从数据库继承而来,在支持SQL和数据精细化操作方面有很大的优势。
                             (5)深度学习的支持。深度学习框架出现后,和大数据的计算平台形成了新的竞争局面,以Spark为首的计算平台开始积极探索如何支持深度学习能力,TensorFlow on Spark等解决方案的出现实现了TensorFlow与Spark的无缝连接,更好地解决了两者数据传递的问题。
                             事务处理技术
                             随着移动互联网的快速发展,智能终端数量呈现爆炸式增长,银行和支付机构传统的柜台式交易模式逐渐被终端直接交易模式替代。以金融场景为例,移动支付以及普惠金融的快速发展,为银行业、支付机构和金融监管机构带来了海量高频的线上小额资金支付行为,生产业务系统面临大规模并发事务处理要求的挑战。
                             传统事务技术模式以集中式数据库的单点架构为主,通过提高单机的性能上限适应业务的扩展。而随着摩尔定律的失效(底层硬件的变化),单机性能扩展的模式走到了尽头,而数据交易规模的急速增长(上层应用的变化)要求数据库系统具备大规模并发事务处理的能力。大数据分析系统经过10多年的实践,积累了丰富的分布式架构的经验,Paxos、Raft等一致性协议的诞生为事务系统的分布式铺平了道路。新一代分布式数据库技术在这些因素的推动下应运而生。
                             如下图所示,经过多年发展,当前分布式事务架构正处在快速演进的阶段,综合学术界以及产业界工作成果,目前主要分为三类:
                             
                             事务型数据库架构演进图
                             (1)基于原有单机事务处理关系数据库的分布式架构改造:利用原有单机事务处理数据库的成熟度优势,通过在独立应用层面建立起数据分片和数据路由的规则,建立起一套复合型的分布式事务处理数据库的架构。
                             (2)基于新的分布式事务数据库的工程设计思路的突破。通过全新设计关系数据库的核心存储和计算层,将分布式计算和分布式存储的设计思路和架构直接植入数据库的引擎设计中,提供对业务透明和非侵入式的数据管理和操作/处理能力。
                             (3)基于新的分布式关系数据模型理论的突破。通过设计全新的分布式关系数据管理模型,从数据组织和管理的最核心理论层面,构造出完全不同于传统单机事务数据库的架构,从数据库的数据模型的根源上解决分布式关系数据库的架构。
                             分布式事务数据库进入到各行各业面临诸多挑战,其一是多种技术路线,目前没有统一的定义和认识;其二是除了互联网公司有大规模使用外,其他行业的实践刚刚开始,需求较为模糊,采购、使用、运维的过程缺少可供参考的经验,需要较长时间的摸索;其三是缺少可行的评价指标、测试方法和测试工具来全方位比较当前的产品,规范市场,促进产品的进步。故应用上述技术进行交易类业务进行服务时,应充分考虑“可持续发展”“透明开放”“代价可控”三原则,遵循“知识传递先行”“测试评估体系建立”“实施阶段规划”三步骤,并认识到“应用过度适配和改造”“可用性管理策略不更新”“外围设施不匹配”三个误区。
                             大数据事务处理类技术体系的快速演进正在消除日益增长的数字社会需求同旧式的信息架构缺陷,未来人类行为方式、经济格局以及商业模式将会随大数据事务处理类技术体系的成熟而发生重大变革。
                             数据流通技术
                             数据流通是释放数据价值的关键环节。然而,数据流通也伴随着权属、质量、合规性、安全性等诸多问题,这些问题成为了制约数据流通的瓶颈。为了解决这些问题,大数据从业者从诸多方面进行了探索。目前来看,从技术角度的探索是卓有成效和富有潜力的。
                             从概念上讲,基础的数据流通只存在数据供方和数据需方这两类角色,数据从供方通过一定手段传递给需方。然而,由于数据权属和安全的需要,不能简单地将数据直接进行传送。数据流通的过程中需要完成数据确权、控制信息计算、个性化安全加密等一系列信息生产和再造,形成闭合环路。
                             安全多方计算和区块链是近年来常用的两种技术框架。由于创造价值的往往是对数据进行的加工分析等运算的结果而非数据本身,因此对数据需方来说,本身不触碰数据、但可以完成对数据的加工分析操作,也是可以接受的。安全多方计算这个技术框架就实现了这一点。其围绕数据安全计算,通过独特的分布式计算技术和密码技术,有区分地、定制化地提供安全性服务,使得各参与方在无需对外提供原始数据的前提下实现了对与其数据有关的函数的计算,解决了一组互不信任的参与方之间保护隐私的协同计算问题。区块链技术中多个计算节点共同参与和记录,相互验证信息有效性,既进行了数据信息防伪,又提供了数据流通的可追溯路径。业务平台中授权和业务流程的解耦对数据流通中的溯源、数据交易、智能合约的引入有了实质性的进展。
               大数据产业体系
               随着大数据技术不断演进和应用持续深化,以数据为核心的大数据产业体系正在加速构建。大数据产业体系中主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源,如下图所示。
               
               大数据产业体系
                      大数据解决方案提供商
                      大数据解决方案提供商面向企业用户提供大数据一站式部署方案,覆盖数据中心和服务器等硬件、数据存储和数据库等基础软件、大数据分析应用软件以及技术运维支持等方面内容。其中,大数据基础软件和应用软件是大数据解决方案中的重点内容。当前,企业提供的大数据解决方案大多基于Hadoop开源项目,例如,IBM基于Hadoop开发的大数据分析产品BigInsights、甲骨文融合了Hadoop开源技术的大数据一体机、Cloudera的Hadoop商业版等。大数据解决方案提供商中,主要包括传统IT厂商和新兴的大数据创业公司。传统IT厂商主要有IBM、HP等解决方案提供商以及甲骨文、Teradata等数据分析软件商。它们大多以原有IT解决方案为基础,融合Hadoop,形成融合了结构化和非结构化两条体系的“双栈”方案。通过一系列收购来提升大数据解决方案服务能力,成为这些IT巨头的主要策略。
                      国际上也诞生了一批专门提供非结构化数据处理方案的新兴创业公司。这些公司包括Cloudera、Hortonworks、MapR等,它们主要基于Hadoop开源项目,开发Hadoop商业版本和基于Hadoop的大数据分析工具,单独或者与传统IT厂商合作提供企业级大数据解决方案。这些新兴大数据企业成为资本市场的热点。国内华为、联想、浪潮、曙光等一批IT厂商也都纷纷推出大数据解决方案。但总体上,国内大数据解决方案提供商实力较弱,产品一些关键行业还未形成影响力,新兴大数据解决方案初创企业也凤毛麟角。
                      大数据处理服务提供商
                      大数据处理服务提供商主要以服务的方式为企业和个人用户提供大数据海量数据分析能力和大数据价值挖掘服务。按照服务模式进行划分,大数据处理服务提供商可以分为以下四类。
                      第一类是在线纯分析服务提供商。此类服务商主要是互联网企业、大数据分析软件商和新创企业等,通过SaaS或PaaS云服务形式为用户提供服务。典型的服务如谷歌提供的大数据分析工具Big Query、亚马逊提供的云数据仓库服务RedShift、微软的Azure HDInsigh1010data提供的商业智能服务等。国内一些云服务商也逐步开始提供大数据相关云服务,如阿里云的开放数据处理服务(ODPS)、百度的大数据引擎、腾讯的数据云等。
                      第二类是既提供数据又提供分析服务的在线提供商。此类服务商主要是拥有海量用户数据的大型互联网企业,主要以SaaS形式为用户提供大数据服务,服务背后以自有大数据资源为支撑。典型的服务如谷歌Facebook的自助式广告下单服务系统、Twitter基于实时搜索数据的产品满意度分析等。国内百度推出的大数据营销服务“司南”就属于此类。
                      第三类是单纯提供离线分析服务的提供商。此类服务商主要为企业提供专业、定制化的大数据咨询服务和技术支持,主要集中为大数据咨询公司、软件商等,例如专注于大数据分析的奥浦诺管理咨询公司(Opera Solutions)、数据分析服务提供商美优管理顾问公司(Mu Sigma)等。
                      第四类是既提供数据又提供离线分析服务的提供商。此类服务商主要集中在信息化水平较高、数据较为丰富的传统行业。例如日本日立集团(Hitachi)于2013年6月初成立的日立创新分析全球中心,其广泛收集汽车行驶记录、零售业购买动向、患者医疗数据、矿山维护数据和资源价格动向等庞大数据信息,并基于收集的海量信息开展大数据分析业务。又如美国征信机构Equifax基于全球8000亿条企业和消费者行为数据,提供70余项面向金融的大数据分析离线服务。
                      大数据资源提供商
                      既然数据成为了重要的资源和生产要素,必然会产生供应与流通需求。数据资源提供商因此应运而生,它是大数据产业的特有环节,也是大数据资源化的必然产物。数据资源提供商,包括数据拥有者和数据流通平台两个主要类型。数据拥有者可以是企业、公共机构或者个人。数据拥有者通常直接以免费或有偿的方式为其他有需求的企业和用户提供原数据或者处理过的数据。例如美国电信运营商Verizon推出的大数据应用精准营销洞察(Precision Market Insights),将向第三方企业和机构出售其匿名化和整合处理后的用户数据。国内阿里巴巴公司推出的淘宝量子恒道、数据魔方和阿里数据超市等,属于此种类型。
                      数据数据流通平台是多家数据拥有者和数据需求方进行数据交换流通的场所。按平台服务目的不同,可分为政府数据开放平台和数据交易市场。
                      (1)政府数据开放平台。主要提供政府和公共机构的非涉密数据开放服务,属于公益性质。全球不少国家已经加入到开放政府数据行动,推出公共数据库开放网站,例如美国数据开放网站Data.gov已有超过37万个数据集、1209个数据工具、309个网页应用和137个移动应用,数据源来自171个机构。国内地方政府数据开放平台开始出现,如国家统计局的国家数据网站、北京市政府和上海市政府的信息资源平台等数据开放平台正在建设过程中。
                      (2)数据交易市场。商业化的数据交易活动催生了多方参与的第三方数据交易市场。国际上比较有影响力的有微软的AzureData Marketplace、被甲骨文收购的BlueKai、DataMarket、Factual、Infochimps、DataSift等等,主要提供地理空间、营销数据和社交数据的交易服务。大数据交易市场发展刚刚起步,在市场机制、交易规则、定价机制、转售控制和隐私保护等方面还有很多工作要做。国内,2014年2月,在北京市和中关村管委会指导下,中关村大数据交易产业联盟成立,将在国内推动国内大数据交易相关规范化方面开展工作。
               大数据对电子商务的发展影响
                      大数据更好地支撑了电子商务营销精准化和实时化
                      电子商务发展到今天,其营销平台、营销方式都发生了很大的改变。电子商务平台、移动终端、社交网络以及物联网等设备的使用大大增加了消费者数据,而云计算、复杂分析系统等大数据处理手段,为人们整合各个渠道消费者数据、形成有用的营销信息提供了可能。与传统的电子商务数据处理方式相比,大数据处理方式更快捷、更精细,它给我们科学分析消费者偏好及其消费行为轨迹提供巨大帮助。特别是在移动设备进入电子商务领域后,地理位置服务信息处理使电子商务一对一精准营销成为可能,极大程度提升了电子商务营销的准确性,有力地支撑了电子商务营销的精准化与实时化。
                      大数据更好地支撑了电子商务高度差异化和个性化
                      在传统电子商务营销背景下,企业与消费者总是处于双向信息不对称状态。一方面企业很难掌握消费者的消费行为和消费习惯,另一方面消费者了解企业产品的信息渠道相对较窄。进入大数据时代后,企业可以通过科学分析海量数据来获得更加丰富的消费者信息,从而针对不同消费者消费需求,提供特定的产品和服务,以最大限度地提高其满意度。消费者可以通过移动终端等渠道及时向电子商务企业传递信息,为企业进行个性化服务提供依据。由此可以推断,未来电子商务价值创造将会围绕消费者个性化需求展开,并将消费者纳入到企业产品设计与生产过程,实现共同的价值创造。
                      大数据进一步推进了价值链、供应链一体化
                      大数据等新型信息技术可以促进各个渠道的跨界数据整合,使所有围绕消费者消费行为的价值链、供应链企业成为一个整体。如大数据可以将地理位置不同、从事行业不同的研发、生产、加工、营销、仓储、配送、服务等各环节企业在满足消费者消费需求这一共同目的下组成动态联盟,通过彼此协作和创造,真正为消费者提供个性化产品和服务。相对于传统意义上的供应链,通过大数据连接起来的动态联盟反应速度更快、智能化程度更高,这既有利于联盟内企业的信息、资源共享,也有利于联盟内企业的分工协作,从而创造新的价值。
                      大数据推动了新型增值服务模式发展
                      电子商务中应用众多的新型信息技术产生了生产、消费、金融、物流等一系列大数据,这些本属于不同领域的大数据在被综合运用的过程中会产生新的融合,从而形成新的增值服务。如电子商务中产生的买卖双方信息、物流信息、金融信息,如果加以整合肯定能够使企业在市场竞争中处于比较有利的位置。在此基础上,企业还可以积极开展类似金融信用服务、供应链整合等增值服务。随着大数据的广泛应用,加之大数据分析手段创新,已经产生了互联网金融等多个增值服务,给包括电子商务企业在内的众多中小企业提供了新的发展空间。假以时日,大数据还会催生更多新型增值服务模式、产生众多的产业。
 
       数据采集
        数据采集阶段的主要任务就是获取各个不同数据源的各类数据,按照统一的标准进行数据的转换、清洗等工作,以形成后续数据处理的符合标准要求的数据集。
        原始数据往往形式多样,包括:结构化数据,例如业务系统中的交易明细、操作日志等;非结构化数据,例如企业中的各种文档数据,视频、音频等数据;半结构化数据,例如Web页面的HTML文档等。而且其来源和种类也存在很大差距。
        当前的大数据处理中,数据的种类一般包括:
        .传感数据:传感数据是由感知设备或传感设备感受、测量及传输的数据。这些感知设备或传感设备实时和动态地收集大量的时序传感数据资源。传感数据种类有很多,如人身体的传感数据,网络信号的传感数据和气象的传感数据等。近年来随着物联网、工业互联网的日益发展,传感数据越来越丰富,人们也逐渐发现了其数据价值。
        .业务数据:企业业务系统在执行日常业务活动时产生的大量数据,包括设备工况、操作记录、交易流水,以及用户在使用系统时遗留下来的大量行为数据。这些数据反映了人或者物的属性、偏好,在推荐或预测系统中有很大的利用价值。
        .人工输入数据:用户通过软件人机交互等主动输入的数据,典型代表是微博、微信、抖音等系统的用户输入数据。随着互联网的不断深入,手机APP应用的不断发展,这种用户产生的数据也越来越多,越来越丰富。
        .科学数据:通过科学研究和科学实验不断搜集和汇聚的数据,一般是以电子记录或文本的形式存在。
        从大数据的来源进行划分,其种类包括:
        .企业数据:企业自建的各种业务系统,如ERP、在线交易系统、招聘系统等,也会产生各种数据集。
        .政府数据:政府信息化已发展多年,构建了很多业务数据。近年来政府也在不断地建设大数据中心,发布各种数据,包括人社、医疗、税务、工商、财务等。
        .互联网数据:互联网数据是当前大数据应用的一个重要的数据来源。互联网上存在各种应用沉淀下来的大量数据,包括门户网站、社交信息、电商网站等等。
        其中,企业数据一般属于内部数据,而政府数据、互联网数据往往属于外部数据。
        从上面大数据的分类可以看出,数据来源渠道众多,差异非常大。因此,数据采集的主要任务就是进行数据的汇聚,为后续的数据处理做好准备。这个阶段工作中主要涉及的技术包括针对内部数据的数据集成和ETL技术,针对外部数据,尤其是互联网数据的爬虫技术。
        数据集成是把不同来源、格式、特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享。在企业数据集成领域,已经有很多成熟的框架可以利用。目前通常采用联邦式、基于中间件模型和数据仓库等方法来构造集成的系统,这些技术在不同的着重点和应用上解决数据共享和为企业提供决策支持。
        ETL(Extract Transform Load)用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。
        基本的ETL体系结构示意图如下图所示。
        
        ETL体系结构示意图
        ETL过程中的主要环节是数据抽取、数据转换和加工、数据加载。一般ETL工具中,围绕上述三个核心环节进行了功能上的扩充,例如工作流、调度引擎、规则引擎、脚本支持和统计信息等,尽量降低ETL阶段的工作强度,减少工作量。
        数据转换和加工是三个环节的重点,因为抽取的数据中往往存在各种问题,例如数据格式不一致、数据输入错误、字段不匹配、字段类型不符、数据不完整等。ETL一般以组件化的方式实现数据转换和加工。常用的数据转换组件有字段映射、数据过滤、数据清洗、数据替换、数据计算、数据验证、数据加解密、数据合并、数据拆分等,并以工作流的形式进行各种方式的组合,以满足数据转换的需求。有的ETL工具也提供脚本支持,满足用户定制化的数据转换需求。
        常用的ETL工具有三种:DataStage、Informatica PowerCenter和Kettle。
        .DataStage:IBM公司的DataStage是一种数据集成软件平台,专门针对多种数据源的ETL过程进行了简化和自动化,同时提供图形框架,用户可以使用该框架来设计和运行用于变换和清理、加载数据的作业。它能够处理的数据源有主机系统的大型数据库、开发系统上的关系数据库和普通的文件系统。
        .Informatica PowerCenter:Informatica公司开发的为满足企业级需求而设计的企业数据集成平台。可以支持各类数据源,包括结构化、半结构化和非结构化数据。提供丰富的数据转换组件和工作流支持。
        .Kettle:Kettle是一款国外开源的ETL工具,纯Java编写,可以在Windows、Linux、UNIX上运行,数据抽取高效稳定。管理来自不同数据库的数据,提供图形化的操作界面,提供工作流支持。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。Kettle包括4个产品:Spoon、Pan、Chef、Kitchen。Spoon通过图形界面来设计ETL转换过程(Transformation)。Pan批量运行由Spoon设计的ETL转换(例如使用一个时间调度器),是一个后台执行的程序,没有图形界面。Chef创建任务(Job),任务通过允许每个转换、任务、脚本等等,更有利于自动化更新数据仓库的复杂工作。Kitchen批量使用由Chef设计的任务(例如使用一个时间调度器)。
        由于很多大数据应用都需要来自互联网的外部数据,因此,爬虫技术也称为数据采集阶段的一个主要基础性的技术。
        网络爬虫(又称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取互联网信息的程序或者脚本。网络爬虫基本的体系结构如下图所示。
        
        爬虫框架示意图
        爬虫调度器主要负责统筹其他四个模块的协调工作。URL管理器负责管理URL链接,维护已经爬取的URL集合和未爬取的URL集合,提供获取新URL链接的接口。HTML下载器用于从URL管理器中获取未爬取的URL链接并下载HTML网页。HTML解析器用于从HTML下载器中获取已经下载的HTML网页,并从中解析出新的URL链接交给URL管理器,解析出有效数据交给数据存储器。
        网络爬虫大致可以分为以下几种类型:通用网络爬虫、聚焦网络爬虫、深层网络(Deep Web)爬虫。实际的大数据应用由于往往聚焦于某个特定的应用目标,其采用的网络爬虫系统通常是聚焦网络爬虫、深层网络爬虫技术相结合实现的。
        通用网络爬虫,爬行对象从一些种子URL扩充到整个Web,主要为门户站点搜索引擎和大型Web服务提供商采集数据。通用网络爬虫的结构大致可以分为页面爬行模块、页面分析模块、链接过滤模块、页面数据库、URL队列、初始URL集合几个部分。为提高工作效率,通用网络爬虫会采取一定的爬行策略。常用的爬行策略有:深度优先策略、广度优先策略。
        聚焦网络爬虫,是指选择性地爬行那些与预先定义好的主题相关页面的网络爬虫。和通用网络爬虫相比,聚焦爬虫只需要爬行与主题相关的页面,可以很好地满足一些特定人群对特定领域信息的需求。聚焦网络爬虫和通用网络爬虫相比,增加了链接评价模块以及内容评价模块。聚焦爬虫爬行策略实现的关键是评价页面内容和链接的重要性,常见的爬行策略有基于内容评价的爬行策略、基于链接结构评价的爬行策略、基于增强学习的爬行策略、基于语境图的爬行策略等。
        深层网络爬虫用于专门爬取那些大部分内容不能通过静态链接获取的、隐藏在搜索表单后的,只有用户提交一些关键词才能获得的Web页面。Deep Web爬虫爬行过程中最重要的部分就是表单填写,包含两种类型:基于领域知识的表单填写,此方法一般会维持一个本体库,通过语义分析来选取合适的关键词填写表单;基于网页结构分析的表单填写,此方法一般无领域知识或仅有有限的领域知识,将网页表单表示成DOM树,从中提取表单各字段值。常见的爬虫工具有如下三种:
        .Nutch:一个开源Java实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。Nutch有Hadoop支持,可以进行分布式抓取、存储和索引。Nutch采用插件结构设计,高度模块化,容易扩展。
        .Scrapy:是Python开发的一个快速、高层次的屏幕抓取和Web抓取框架,用于抓取Web站点并从页面中提取结构化的数据。Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便地修改。它提供了多种类型爬虫的基类,如BaseSpider、sitemap爬虫、Web2.0爬虫等。
        .Larbin:Larbin是一种开源的网络爬虫/网络蜘蛛,用C++语言实现。Larbin目的是能够跟踪页面的URL进行扩展的抓取,最后为搜索引擎提供广泛的数据来源。
        当数据采集到以后,需要对采集并清洗后的数据进行存储。具体的存储技术在13.1.3云关键技术中的分布式数据存储中介绍,此处不再详述。
   题号导航      2019年下半年 信息处理技术员 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第64题    在手机中做本题