免费智能真题库 > 历年试卷 > 系统分析师 > 2022年上半年 系统分析师 上午试卷 综合知识
  第7题      
  知识点:   信息系统安全体系   认证   认证技术
  章/节:   安全性       

 
()不属于基于生物特征的认证技术。
 
 
  A.  指纹识别
 
  B.  人脸识别
 
  C.  口令
 
  D.  虹膜识别
 
 
 

  相关试题:安全性          更多>  
 
  第9题    2012年上半年  
   53%
下列算法中,用于密钥交换的是(9)。
  第65题    2010年上半年  
   53%
嗔探器是一种网络故障分析与排查的工具,当其处于杂收模式时,网络接口(65)。
  第6题    2011年上半年  
   72%
下面病毒中,属于蠕虫病毒的是(6)。
   知识点讲解    
   · 信息系统安全体系    · 认证    · 认证技术
 
       信息系统安全体系
        信息安全是一个很广泛的概念,涉及到计算机和网络系统的各个方面。从总体上来讲,信息安全有5个基本要素。
        (1)机密性:确保信息不暴露给未授权的实体或进程。
        (2)完整性:只有得到允许的人才能够修改数据,并能够判别数据是否已被篡改。
        (3)可用性:得到授权的实体在需要时可访问数据。
        (4)可控性:可以控制授权范围内的信息流向和行为方式。
        (5)可审查性:对出现的安全问题提供调查的依据和手段。
                      安全系统体系结构
                      ISO 7498-2从体系结构的观点描述了5种可选的安全服务、8项特定的安全机制以及5种普遍性的安全机制,它们可以在OSI/RM模型的适当层次上实施。
                             安全服务
                             安全服务是指计算机网络提供的安全防护措施,包括认证服务、访问控制、数据机密性服务、数据完整性服务、不可否认服务。
                             (1)认证服务:确保某个实体身份的可靠性,可分为两种类型。一种类型是认证实体本身的身份,确保其真实性,称为实体认证。实体的身份一旦获得确认就可以和访问控制表中的权限关联起来,决定是否有权进行访问。口令认证是实体认证中一种最常见的方式。另一种认证是证明某个信息是否来自于某个特定的实体,这种认证叫做数据源认证。数据签名技术就是一例。
                             (2)访问控制:防止对任何资源的非授权访问,确保只有经过授权的实体才能访问受保护的资源。
                             (3)数据机密性服务:确保只有经过授权的实体才能理解受保护的信息。在信息安全中主要区分两种机密性服务:数据机密性服务和业务流机密性服务,数据机密性服务主要是采用加密手段使得攻击者即使窃取了加密的数据也很难推出有用的信息;业务流机密性服务则要使监听者很难从网络流量的变化上推出敏感信息。
                             (4)数据完整性服务:防止对数据未授权的修改和破坏。完整性服务使消息的接收者能够发现消息是否被修改,是否被攻击者用假消息换掉。
                             (5)不可否认服务:防止对数据源以及数据提交的否认。它有两种可能:数据发送的不可否认性和数据接收的不可否认性。这两种服务需要比较复杂的基础设施的技术,如数字签名技术。
                             特定的安全机制
                             安全机制是用来实施安全服务的机制。安全机制既可以是具体的、特定的,也可以是通用的。
                             (1)加密机制:用于保护数据的机密性。它依赖于现代密码学理论,一般来说加/解密算法是公开的,加密的安全性主要依赖于密钥的安全性和强度。
                             (2)数字签名机制:保证数据完整性及不可否认性的一种重要手段,它可以采用特定的数字签名机制生成,也可以通过某种加密机制生成。
                             (3)访问控制机制:与实体认证密切相关。首先,要访问某个资源的实体应成功通过认证,然后访问控制机制对该实体的访问请求进行处理,查看该实体是否具有访问所请求资源的权限,并做出相应的处理。
                             (4)数据完整性机制:用于保护数据免受未经授权的修改,该机制可以通过使用一种单向的不可逆函数(例如散列函数)来计算出消息摘要,并对消息摘要进行数字签名来实现。
                             (5)认证交换机制:通过交换标识信息使通信双方相互信任。
                             (6)流量填充机制:针对的是对网络流量进行分析的攻击。有时攻击者通过对通信双方的数据流量的变化进行分析,根据流量的变化来推出一些有用的信息或线索。
                             (7)路由控制机制:可以指定数据通过网络的路径。这样就可以选择一条路径,这条路径上的节点都是可信任的,确保发送的信息不会因通过不安全的节点而受到攻击。
                             (8)公证机制:由通信各方都信任的第三方提供。由第三方来确保数据完整性、数据源、时间及目的地的正确。
                             普遍性的安全机制
                             普遍性安全机制不是为任何特定的服务而特设的,因此在任一特定的层上,对它们都不作明确的说明。某些普遍性安全机制可认为属于安全管理方面。普遍性安全机制可分为可信功能度、安全标记、事件检测、安全审计跟踪、安全恢复。
                             (1)可信功能度:可以扩充其他安全机制的范围,或建立这些安全机制的有效性;可以保证对硬件与软件寄托信任的手段已超出标准的范围,而且在任何情况下,这些手段随已察觉到的威胁的级别和被保护信息的价值而改变。
                             (2)安全标记:与某一资源(可以是数据单元)密切相关联的标记,为该资源命名或指定安全属性(这种标记或约束可以是明显的,也可以是隐含的)。
                             (3)事件检测:与安全有关的事件检测包括对安全明显事件的检测,也可以包括对“正常”事件的检测,例如,一次成功的访问(或注册)。与安全有关的事件的检测可由OSI内部含有安全机制的实体来做。
                             (4)安全审计跟踪:就是对系统的记录与行为进行独立的评估考查,目的是测试系统的控制是否恰当,保证与既定策略和操作的协调一致,有助于做出损害评估,以及对在控制、策略与规程中指明的改变做出评价。
                             (5)安全恢复:处理来自诸如事件处置与管理功能等机制的请求,并把恢复动作当作是应用一组规则的结果。恢复动作可能有3种:立即动作、暂时动作、长期动作。
                      安全保护等级
                      《计算机信息系统安全保护等级划分准则》(GB 17859—1999)规定了计算机系统安全保护能力的5个等级,即用户自主保护级、系统审计保护级、安全标记保护级、结构化保护级、访问验证保护级。计算机信息系统安全保护能力随着安全保护等级的增高,逐渐增强。
                      (1)用户自主保护级。本级的计算机信息系统将用户与数据隔离,使用户具备自主安全保护的能力。它具有多种形式的控制能力,对用户实施访问控制,即为用户提供可行的手段,保护用户和用户组信息,避免其他用户对数据的非法读写与破坏。第一级适用于普通内联网用户。
                      (2)系统审计保护级。与用户自主保护级相比,本级的计算机信息系统实施了粒度更细的自主访问控制,它通过登录规程、审计安全性相关事件和隔离资源,使用户对自己的行为负责。第二级适用于通过内联网或国际网进行商务活动,需要保密的非重要单位。
                      (3)安全标记保护级。本级的计算机信息系统具有系统审计保护级的所有功能。此外,还提供有关安全策略模型、数据标记,以及主体对客体强制访问控制的非形式化描述;具有准确地标记输出信息的能力;消除通过测试发现的任何错误。第三级适用于地方各级国家机关、金融机构、邮电通信、能源与水源供给部门、交通运输、大型工商与信息技术企业、重点工程建设等单位。
                      (4)结构化保护级。本级的计算机信息系统建立于一个明确定义的形式化安全策略模型之上,它要求将第三级系统中的自主和强制访问控制扩展到所有主体与客体。此外,还要考虑隐蔽通道。本级的计算机信息系统必须结构化为关键保护元素和非关键保护元素。计算机信息系统可信计算机的接口也必须明确定义,使其设计与实现能经受更充分的测试和更完整的复审。加强了鉴别机制,支持系统管理员和操作员的职能,提供可信设施管理,增强了配置管理控制。系统具有相当的抗渗透能力。第四级适用于中央级国家机关、广播电视部门、重要物资储备单位、社会应急服务部门、尖端科技企业集团、国家重点科研机构和国防建设等部门。
                      (5)访问验证保护级。本级的计算机信息系统满足访问监控器需求。访问监控器仲裁主体对客体的全部访问。访问监控器本身是抗篡改的,而且必须足够小,能够分析和测试。为了满足访问监控器需求,计算机信息系统在其构造时,排除了那些对实施安全策略来说并非必要的代码;在设计和实现时,从系统工程角度将其复杂性降低到最小程度。支持安全管理员职能;扩充审计机制,当发生与安全相关的事件时发出信号;提供系统恢复机制。系统具有很高的抗渗透能力。第五级适用于国防关键部门和依法需要对计算机信息系统实施特殊隔离的单位。
                      信息安全保障系统
                      在实施信息系统的安全保障系统时,应严格区分信息安全保障系统的3种不同体系结构,分别是MIS+S、S-MIS和S2-MIS。
                      (1)MIS+S(Management Information System+Security)系统:为初级信息安全保障系统或基本信息安全保障系统,这种系统是初等的、简单的信息安全保障系统,该系统的特点是应用基本不变;硬件和系统软件通用;安全设备基本不带密码。
                      (2)S-MIS(Security-Management Information System)系统:为标准信息安全保障系统,这种系统是建立在PKI/CA(Certificate Authority,认证中心)标准的信息安全保障系统,该系统的特点是硬件和系统软件通用;PKI/CA安全保障系统必须带密码;应用系统必须根本改变。
                      (3)S2-MIS(Super Security-Management Information System)系统:为超安全的信息安全保障系统,这种系统是“绝对的”的安全的信息安全保障系统,不仅使用PKI/CA标准,同时硬件和系统软件都使用专用的安全产品。这种系统的特点是硬件和系统软件都专用;PKI/CA安全保障系统必须带密码;应用系统必须根本改变;主要的硬件和系统软件需要PKI/CA认证。
                      可信计算机系统
                      本节主要介绍TCSEC(Trusted Computer System Evaluation Criteria,可信计算机系统准则)。TCSEC标准是计算机系统安全评估的第一个正式标准,具有划时代的意义。TCSEC将计算机系统的安全划分为4个等级、7个级别。
                      (1)D类安全等级:D类安全等级只包括D1一个级别。D1的安全等级最低。D1系统只为文件和用户提供安全保护。D1系统最普通的形式是本地操作系统,或者是一个完全没有保护的网络。
                      (2)C类安全等级:该类安全等级能够提供审慎的保护,并为用户的行动和责任提供审计能力。C类安全等级可划分为C1和C2两类。C1系统的可信任运算基础体制通过将用户和数据分开来达到安全的目的。在C1系统中,所有的用户以同样的灵敏度来处理数据,即用户认为C1系统中的所有文档都具有相同的机密性。C2系统比C1系统加强了可调的审慎控制。在连接到网络上时,C2系统的用户分别对各自的行为负责。C2系统通过登录过程、安全事件和资源隔离来增强这种控制。C2系统具有C1系统中所有的安全性特征。
                      (3)B类安全等级:B类安全等级可分为B1、B2和B3 3类。B类系统具有强制性保护功能。强制性保护意味着如果用户没有与安全等级相连,系统就不会让用户存取对象。B1系统满足下列要求:系统对网络控制下的每个对象都进行灵敏度标记;系统使用灵敏度标记作为所有强迫访问控制的基础;系统再把导入的、非标记的对象放入系统前标记它们;灵敏度标记必须准确地表示其所联系的对象的安全级别;当系统管理员创建系统或者增加新的通信通道或I/O设备时,管理员必须指定每个通信通道和I/O设备是单级还是多级,并且管理员只能手工改变指定;单级设备并不保持传输信息的灵敏度级别;所有直接面向用户位置的输出(无论是虚拟的还是物理的)都必须产生标记来指示关于输出对象的灵敏度;系统必须使用用户的口令或证明来决定用户的安全访问级别;系统必须通过审计来记录未授权访问的企图。
                      B2系统必须满足B1系统的所有要求。另外,B2系统的管理员必须使用一个明确的、文档化的安全策略模式作为系统的可信任运算基础体制。B2系统必须满足下列要求:系统必须立即通知系统中的每一个用户所有与之相关的网络连接的改变;只有用户能够在可信任通信路径中进行初始化通信;可信任运算基础体制能够支持独立的操作者和管理员。
                      B3系统必须符合B2系统的所有安全需求。B3系统具有很强的监视委托管理访问能力和抗干扰能力。B3系统必须设有安全管理员。B3系统应满足以下要求:除了控制对个别对象的访问外,B3必须产生一个可读的安全列表;每个被命名的对象提供对该对象没有访问权的用户列表说明;B3系统在进行任何操作前,要求用户进行身份验证;B3系统验证每个用户,同时还会发送一个取消访问的审计跟踪消息;设计者必须正确区分可信任的通信路径和其他路径;可信任的通信基础体制为每一个被命名的对象建立安全审计跟踪;可信任的运算基础体制支持独立的安全管理。
                      (4)A类安全等级:A系统的安全级别最高。目前,A类安全等级只包含A1一个安全类别。A1类与B3类相似,对系统的结构和策略不作特别要求。A1系统的显著特征是,系统的设计者必须按照一个正式的设计规范来分析系统。对系统分析后,设计者必须运用核对技术来确保系统符合设计规范。A1系统必须满足下列要求:系统管理员必须从开发者那里接收到一个安全策略的正式模型;所有的安装操作都必须由系统管理员进行;系统管理员进行的每一步安装操作都必须有正式文档。
                      在欧洲四国(英、法、德、荷)也提出了评价满足保密性、完整性、可用性要求的信息技术安全评价准则(Information Technology Security Evaluation Criteria, ITSEC)后,美国又联合以上诸国和加拿大,并会同ISO共同提出了信息技术安全评价的通用准则(Common Criteria for ITSEC, CC),CC已经被技术发达的国家承认为代替ITSEC的评价安全信息系统的标准,且将发展成为国际标准。
 
       认证
        认证又分为实体认证和消息认证两种。实体认证是识别通信对方的身份,防止假冒,可以使用数字签名的方法。消息认证是验证消息在传送或存储过程中有没有被篡改,通常使用报文摘要的方法。
               基于共享密钥的认证
               如果通信双方有一个共享的密钥,则可以确认对方的真实身份。这种算法依赖于一个双方都信赖的密钥分发中心(Key Distribution Center,KDC),如下图所示,其中的A和B分别代表发送者和接收者,KAKB分别表示A、B与KDC之间的共享密钥。
               
               基于共享密钥的认证协议
               认证过程如下:A向KDC发出消息{A,KA(B,KS)},说明自己要与B通信,并指定了与B会话的密钥KS。注意,这个消息中的一部分(B,KS)是用KA加密的,所以第三者不能了解消息的内容。KDC知道了A的意图后就构造了一个消息{KB(A,KS)}发给B。B用KB解密后就得到了A和KS,然后就可以与A用KS会话了。
               然而,主动攻击者对这种认证方式可能进行重放攻击。例如A代表雇主,B代表银行。第三者C为A工作,通过银行转账取得报酬。如果C为A工作了一次,得到了一次报酬,并偷听和复制了A和B之间就转账问题交换的报文,那么贪婪的C就可以按照原来的次序向银行重发报文2,冒充A与B之间的会话,以便得到第二次、第三次……报酬。在重放攻击中攻击者不需要知道会话密钥KS,只要能猜测密文的内容对自己有利或是无利就可以达到攻击的目的。
               基于公钥的认证
               这种认证协议如下图所示。A向B发出EB(A,RA),该报文用B的公钥加密。B返回EARARBKS),用A的公钥加密。这两个报文中分别有A和B指定的随机数RARB,因此能排除重放的可能性。通信双方都用对方的公钥加密,用各自的私钥解密,所以应答比较简单。其中的KS是B指定的会话键。这个协议的缺陷是假定双方都知道对方的公钥。
               
               基于公钥的认证协议
 
       认证技术
        在电子商务交易过程中,交易双方互不见面,如何保证信息发送方和信息接收方的真实性,如何保证交易双方对信息的认可,是必须要解决的重要问题。身份认证、数字摘要、数字签名、数字时间戳等技术是电子商务交易活动中常用的认证技术。
               身份认证
               身份认证技术在电子商务信息安全中处于非常重要的地位,是其他安全机制的基础。只有实现了有效的身份鉴别,才能保证访问控制、安全审计、入侵防范等安全机制的有效实施。
                      身份认证的概念
                      身份认证也称为身份识别或身份鉴别。在电子商务活动过程中,通过身份认证鉴别互联网上用户身份的真实性,保证访问的可控制性以及通信过程的不可抵赖性和信息的完整性。这些问题一方面要通过数字摘要、数字签名等技术来解决,另一方面还需要通过数字认证中心等权威机构负责仲裁和信誉保证。只有这样,电子商务活动才能顺利开展。
                      身份认证的方法
                      现实生活中,人们可以通过出示身份证、驾驶证、工作证等证件证明自己的真实身份。网络环境中,身份认证通常基于以下几种方式进行。
                      (1)口令方式。口令方式是最简单的一种身份认证方式。我们登录电子邮箱,输入用户名、密码等账户信息就是一种基于口令方式的身份认证。基于口令方式进行身份认证的基本原理是将用户输入的口令与系统所保存的口令信息进行比较,进而判断用户身份是否合法。口令方式简单易行,但安全性不高。随着计算机等技术的不断进步和发展,攻击者很容易通过口令猜测、穷举、字典攻击等方式窃取口令。此外,以明文方式传递的口令的安全性还建立在对系统管理员信任的基础上。
                      (2)标记方式。标记方式是通过验证用户持有的某种物理介质,如智能卡、IC卡、磁卡等,判断用户的真实身份。
                      (3)人体生物特征方式。人体生物特征方式是指利用人体生物学特征如指纹、声音、虹膜、DNA等判断用户的真实身份。这些人体生物特征具有因个体不同而不同的特性,因此基于人体生物特征的身份识别是一种很准确和严格的识别方式,但应用成本较高,更适用于保密性要求较高的场合。
                      实际应用过程中,以上三种方式往往会结合起来使用。根据结合使用方式的个数,身份认证方式又可分为单因素认证、双因素认证和多因素认证。单独使用一种方式进行的身份认证称为单因素认证,将两种方式结合使用进行的身份认证称为双因素认证,以次类推,将三种以上方式结合使用进行的身份认证称为多因素认证。以在ATM机上使用银行卡为例,当用户在ATM机上插入银行卡后,ATM机还会要求用户输入正确的密码后方可进入系统进行相关操作,这一身份认证过程同时使用了标记和口令方式进行身份认证,是一种双因素认证方式。
               数字签名
               传统商务活动中,我们通过手写签名达到确认信息的目的。电子商务活动中,交易双方互不见面,可以通过数字签名确认信息。数字签名技术有效解决了电子商务交易活动中信息的完整性和不可抵赖性问题。
                      数字摘要
                             数字摘要的基本概念
                             数字摘要是利用哈希函数对原文信息进行运算后生成的一段固定长度的信息串,该信息串被称为数字摘要。产生数字摘要的哈希算法具有单向性和唯一性的特点。所谓单向性,也称为不可逆性,是指利用哈希算法生成的数字摘要,无法再恢复出原文;唯一性是指相同信息生成的数字摘要一定相同,不同信息生成的数字摘要一定不同。这一特征类似于人类的指纹特征,因此数字摘要也被称为数字指纹。
                             数字摘要的使用过程
                             数字摘要具有指纹特征,因此可以通过对比两个信息的数字摘要是否相同来判断信息是否被篡改过,从而验证信息的完整性。
                             数字摘要的使用过程如下图所示。
                             
                             数字摘要的使用过程
                             (1)发送方将原文用哈希(Hash)算法生成数字摘要1;
                             (2)发送方将原文同数字摘要1一起发送给接收方;
                             (3)接收方收到原文后用同样的哈希(Hash)算法对原文进行运算,生成新的数字摘要2;
                             (4)接收方将收到的数字摘要1与新生成的数字摘要2进行对比,若相同,说明原文在传输的过程中没有被篡改,否则说明原文信息发生了变化。
                             数字摘要算法
                             哈希(Hash)算法是实现数字摘要的核心技术。数字摘要所产生的信息串的长度和所采用的哈希算法有直接关系。目前广泛应用的哈希算法有MD5算法和SHA-1算法。
                             MD5算法的全称是“Message-Digest Alogrithm 5”,诞生于1991年,由国际著名密码学家、RSA算法的创始人Ron Rivest设计发明,经MD2、MD3和MD4发展而来。MD5算法生成的信息摘要的长度为128位。
                             SHA算法的全称是“Secure Hash Alogrithm”,诞生于1993年,由美国国家标准技术研究院(NIST)与美国国家安全局(NSA)设计。SHA(后来被称作SHA-0)于1995年被SHA-1替代,之后又出现了SHA-224、SHA-256、SHA-384和SHA-512等,这些被统称为SHA-2系列算法。SHA-1算法生成的信息摘要的长度为160位,而SHA-2系列算法生成的信息摘要的长度则有256位(SHA-256)、384位(SHA-384)、512位(SHA-512)等。与MD5算法相比,SHA算法具有更高的安全性。
                             MD5算法和SHA算法在实际中有着广泛的应用。与公钥技术结合,生成数字签名。目前几乎主要的信息安全协议中都使用了SHA-1或MD5算法,包括SSL、TLS、PGP、SSH、S/MIME和IPSec等。UNIX系统及不少论坛/社区系统的口令都通过MD5算法处理后保存,确保口令的安全性。
                             需要说明的是,2004年8月,在美国加州圣芭芭拉召开的国际密码学会议上,我国山东大学王小云教授宣布了她及她的研究小组对MD5、HAVAL-128、MD4和RIPEMD等四个著名密码算法的破译结果。2005年2月,王小云教授又破解了另一国际密码算法SHA-1。这为国际密码学研究提出了新的课题。
                      数字签名
                             数字签名的基本概念
                             在ISO 7498-2标准中,数字签名被定义为:“附加在数据单元上的一些数据,或是对数据单元所做的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。实际上,简单地讲,数字签名就是在网络中传送信息报文时,附加一个特殊的唯一代表发送者个人身份的标记,以起到传统上手写签名或印章确认的作用。
                             数字签名建立在数字摘要的基础上,结合公钥加密技术实现。发送者应用自己的私钥对数字摘要进行加密,即生成数字签名。由于发送者的私钥仅为发送者本人所有,所以附加了数字签名的信息能够确认消息发送者的身份,也防止了发送者对本人所发送信息的抵赖行为。同时通过数字摘要技术,接收者可以验证信息是否发生了改变,从而确定信息的完整性。
                             数字签名的使用过程
                             数字签名的使用过程包括签名和验证两部分,如下图所示。
                             
                             数字签名的使用过程
                             (1)发送方将原文用哈希(Hash)算法生成数字摘要Z;
                             (2)发送方将数字摘要Z用自己的私钥加密;
                             (3)发送方将加密后的数字摘要Z(即数字签名)同原文一起发送给接收方;
                             (4)接收方用发送方的公钥解密数字签名,得到数字摘要Z;
                             (5)接收方对接收到的原文用同样的哈希(Hash)算法生成数字摘要Z′;
                             (6)比较Z和Z′,若二者相同,说明信息完整且发送者身份是真实的。
                             由以上过程可以看到,数字签名具有以下两个作用:
                             (1)确认信息的完整性。接收方将原文生成的数字摘要与用接收到的原文生成的新的数字摘要进行对比,相同则说明信息没有改变,不同则说明信息内容发生了变化。因此数字签名能够验证信息是否被修改,从而确定信息的完整性。
                             (2)确认信息发送者的身份,保证发送信息的不可抵赖性。发送者用自己的私钥对数字摘要进行加密,接收者如果能用对应的公钥进行解密,则说明信息一定是由该发送者发送的,从而确认了发送者的身份。此外,由于发送者的私钥是发送者本人拥有(除非丢失、泄露或被窃取),所以发送者不能否认自己曾经发送过的信息。
                             数字签名的种类
                             实现数字签名的基本方法有以下几种。
                             (1)RSA签名。RSA签名是基于RSA算法实现数字签名的方案,ISO/IEC 9796和ANSI X9.30-199X已将RSA作为建议数字签名的标准算法。
                             (2)ElGamal签名。ElGamal签名是专门为签名目的而设计。该机制由T.ElGamal于1985年提出,经修正后,被美国国家标准与技术学会(NIST)作为数字签名标准(Digital Signature Standard,DSS)。
                             RSA签名基于大整数素数分解的困难性,ElGamal签名基于求离散对数的困难性。在RSA签名机制中,明文与密文一一对应,对特定信息报文的数字签名不变化,是一种确定性数字签名。ElGamal签名机制采用非确定性的双钥体制,对同一消息的签名,根据签名算法中随机参数选择的不同而不同,是一种随机式数字签名。
               数字证书与认证机构
               传统商务活动中,我们通过出示身份证、营业执照等证件证明我们的合法身份。身份证由公安部门发放,营业执照由工商管理部门发放,他们是大家信任的第三方权威机构,由他们所发放的身份或资格证明受到大家的认可。电子商务活动中,不见面的双方证明自己的真实身份,通过数字证书及其发放机构认证中心实现。
                      数字证书
                             数字证书的基本概念
                             数字证书(Digital Certification)是标识网络用户身份的电子文档,该电子文档由权威的第三方认证机构CA负责发放。数字证书包含用户的基本数据信息及公钥信息、颁发证书的CA的相关信息,并由CA进行数字签名,保证其真实性。数字证书类似于现实生活中的身份证、营业执照、军官证等证件,起到了证明网络用户身份及其公钥合法性的作用。
                             数字证书的分类
                             数字证书在网络活动中的应用领域与范围越来越广,按照其功能与用途进行分类主要有个人证书、单位证书、服务器证书、代码签名证书、CA证书。
                             (1)个人证书。用于证实参与个人网上交易、网上支付、电子邮件等业务时的用户身份。此类证书包含个人用户的身份信息、个人用户的公钥以及证书机构签发的签名等。
                             (2)单位证书。用于证明参与网络活动的企业的身份,包括单位身份证书、单位E-mail证书、部门证书、职位证书等多种类型。
                             (3)服务器证书。用于证实网络交易中服务器(如银行服务器、商家服务器)的身份及公钥。
                             (4)代码签名证书。用于证明软件开发者的身份。使用代码签名证书,用户可以验证软件的来源是否是真实的开发者,同时也可以确认软件的完整性,保证软件在接收过程中没有被篡改。
                             (5)CA证书。用户也可能需要验证CA的真实性,CA证书就是用来证明CA真实身份的证书。
                             数字证书的内容
                             数字证书遵循国际流行的ITU-Trec.X.509标准。数字证书的内容可分为两部分:数字证书拥有者的信息和颁发数字证书的CA的信息。
                             数字证书拥有者的信息主要包括:
                             (1)数字证书的版本信息。
                             (2)数字证书的序列号。每个数字证书都有一个唯一的证书序列号,用以识别证书。当证书被撤销时,数字证书序列号会被放入证书撤销列表中。
                             (3)数字证书的有效期。包括有效起始日期和有效终止日期,超过该日期范围,数字证书无效。
                             (4)数字证书的主题。证书拥有者的名称。
                             (5)公钥信息。数字证书拥有者的公钥信息,包括公钥加密体制算法名称及公钥的字符串信息,该项只适用于RSA加密算法体制。
                             (6)缩略图。即该证书的数字摘要,用以验证证书的完整性。
                             (7)缩略图算法。生成该证书数字摘要的算法。
                             (8)其他扩展信息。
                             颁发数字证书的CA的信息主要包括:
                             (1)数字证书颁发者的信息。包括CA的名称等。
                             (2)数字证书颁发者的数字签名。CA对颁发的证书的签名。
                             (3)数字签名算法。数字证书颁发者CA使用的数字签名算法。
                             数字证书的工作原理
                             使用数字证书就像我们平常使用身份证一样,当发送方发送信息给接收方时,发送方将信息与自己的数字证书一同发送给接收方,接收方通过验证数字证书确认发送方的身份。具体过程如下:
                             (1)接收方首先验证证书的真实性。接收方用CA的公钥解开CA对数字证书的签名,如果没有错误,说明证书是经过有效认证的。
                             (2)接收方验证证书的完整性。接收方采用数字证书中提供的数字摘要算法对数字证书进行运算生成数字摘要,再与数字证书中的数字摘要进行对比,如果一致,说明证书没有被篡改,验证了其完整性。
                             经过以上验证,确认了数字证书的真实性和可靠性,从而认证了信息发送方的身份。
                             在数字证书的使用过程中,涉及数字证书的有效性问题。如果数字证书无效,也就无须验证。有效的数字证书需满足以下三个条件:
                             (1)数字证书没有过期。数字证书的内容中包含数字证书的有效起始日期和有效终止日期,超过该日期范围的数字证书就是无效的,如下图所示。
                             
                             数字证书有效期
                             (2)数字证书对应的密钥没有被修改或丢失。如果发生数字证书中的公钥被修改或数字证书公钥所对应的私钥丢失,其所对应的数字证书均应被视为无效。
                             (3)数字证书不在证书撤销列表中。数字证书认证机构会保存一张证书撤销列表,就像黑名单一样,将所有已撤销证书的信息列在该表中。如果证书信息(如序列号)已在证书撤销列表中,则该证书就是无效的,不能用于证明该证书拥有者的用户身份。
                      认证中心
                      认证中心是数字证书的颁发机构,是基于Internet平台建立的一个公正的、权威的、第三方独立组织机构,主要负责数字证书的发行、管理以及认证服务,其英文为Certification Authority,简称CA。
                      认证中心的核心职能是发放和管理数字证书,包括证书的颁发、证书的更新、证书的查询、证书的作废、证书的归档等。
                             证书的颁发
                             用户想获得数字证书时,首先要向认证中心提出申请,认证中心接收用户的申请,在核实情况后,批准或拒绝用户申请。批准用户申请签发数字证书遵循一定的原则:
                             (1)保证发出证书的序列号各不相同;
                             (2)两个不同实体所获得的证书主题内容相异;
                             (3)不同主题内容的证书包含的公开密钥相异。
                             证书的更新
                             认证中心可以定期更新所有用户的证书,或者根据用户的请求更新用户的证书。例如,用户证书有效期满以后,由认证中心负责进行证书的更新。
                             证书的查询
                             认证中心提供用户证书查询的管理,分为证书申请查询和用户证书查询。证书申请查询是指认证中心根据用户查询请求返回当前用户证书申请的处理过程;用户证书查询是指目录服务器根据用户的请求返回适当的证书。
                             证书的作废
                             用户私钥丢失、泄露等会造成用户证书需要申请作废,认证中心将根据用户的作废申请请求确定是否将该数字证书作废;或者证书已过有效期,认证中心自动将该证书作废。认证中心通过维护证书撤销列表(Certificate Renovation List,CRL)完成上述功能。
                             证书的归档
                             作废的证书并不能简单的丢弃,认证中心需要对其进行存档管理,以备需要验证以前某个交易过程中产生的数字签名时查询。
   题号导航      2022年上半年 系统分析师 上午试卷 综合知识   本试卷我的完整做题情况  
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /
10 /
11 /
12 /
13 /
14 /
15 /
 
16 /
17 /
18 /
19 /
20 /
21 /
22 /
23 /
24 /
25 /
26 /
27 /
28 /
29 /
30 /
 
31 /
32 /
33 /
34 /
35 /
36 /
37 /
38 /
39 /
40 /
41 /
42 /
43 /
44 /
45 /
 
46 /
47 /
48 /
49 /
50 /
51 /
52 /
53 /
54 /
55 /
56 /
57 /
58 /
59 /
60 /
 
61 /
62 /
63 /
64 /
65 /
66 /
67 /
68 /
69 /
70 /
71 /
72 /
73 /
74 /
75 /
 
第7题    在手机中做本题